1. Calculate the wavelength of a:
- γ-ray photon with $E=1.46$ MeV
- X-ray photon with $E=54.0$ keV
- UV photon with $E=10.6$ eV
- Visible light with $E=2.2$ eV
- Infrared light with $E=0.1$ eV
- Radio waves with $E=10^{-7}$ eV

2. Calculate the energies and frequencies of the photons of the Balmer series in a Hydrogen atom up to $n=4$.

3. Vermeer typically used in his paintings seven principal pigments, one of them lead white (PbCO$_3$) and another Vermillion (red) HgS. Calculate what characteristic X-rays you would expect from the K$_\alpha$ and K$_\beta$ transitions for the two heavy element components Pb (lead) and Hg (mercury). Use the simplified formalism given in class and compare with the numbers quoted in the web-based tabulations.

4. The Silver isotope 109Ag has a mass number $A=109$, what is its number of neutrons?
The Silver isotope 104Ag cannot maintain its stability because of the deflective Coulomb forces between its 47 positively charged protons, what is the neutron number?
How many electrons does a neutral silver atom have?
Calculate the energies and the wave length for the characteristic K$_\alpha$ and K$_\beta$ transitions of silver?

5. The radioactive fluorine isotope 18F decays by what mechanism to 18O (oxygen)?
The radioactive gold isotope 198Au decays by what mechanism to 198Hg (mercury)?
The radioactive radium isotope 226Ra decays by what mechanism to 222Rn (radon)?

6. The Aluminum isotope 26Al decays by β$^+$ decay to?
The Gadolinium isotope 148Gd decays by α decay to?
The Carbon isotope 14C decays by β$^-$ decay to?
Physics 10262 - Chapter 1 – Homework

7. Calculate the decay constant λ for the:
 Bismuth isotope 108Bi with a half life of 3.7×10^5 y;
 Potassium isotope 40K with a half life of 1.28×10^9 y;
 Carbon isotope 14C with a half life of 5.73×10^3 y;
 Cobalt isotope 60Co with a half life of 5.27 y

8. The body of Ramses II contained 3.4×10^{20} particles of the Potassium isotope 40K and 1.6×10^{15} particles of the radioactive Carbon 14C at the moment of his death. How many 40K and 14C particles are left in the mummy after 3290 years in the tomb?

9. Calculate the present 14C and 40K activity of the mummy of Ramses II and in the mummy of Oetzi, the iceman found in the Alps, who presumably was murdered 3300 BC. Assume the same initial 14C and 40K content for both Ramses and Oetzi.

10. The Shroud of Turin is supposed to be 1980 years old. Critics argue that the shroud is a medieval fake sold to crusading knights 700 years ago. Assuming that the initial 14C/12C ratio was 2.1×10^{-12}, what ratio would you expect from a 14C radiocarbon measurement for both of the proposed ages.