Isoscalar response of ^{68}Ni to α-particle and deuteron probes

M. Vandebrouck,1,2,3 J. Gibelin,2 E. Khan,1 N. L. Achouri,2 H. Baba,4 D. Beaumel,1 Y. Blumenfeld,1 M. Caamaño,5 L. Cáceres, G. Colò,6 F. Delaunay,2 B. Fernandez-Dominguez,3 U. Garg,7 G. F. Grinyer,3 M. N. Harakeh,3,8 N. Kalantar-Nayestanaki,9 N. Keeley,9 W. Mittig,10 J. Pancin,3 R. Raabe,11 T. Roger,3,11 P. Roussel-Chomaz,12 H. Savajols,3 O. Sorlin,3 C. Stodel,3 D. Suzuki,1,10 and J. C. Thomas3

1IPN Orsay, Université Paris Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France
2LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, CAEN, France
3Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France
4RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
5Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Spain
6Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano, 20133 Milano, Italy
7Physics Department, University of Notre Dame, Notre Dame, Indiana 46556, USA
8KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
9National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Poland
10NSCL, Michigan State University, East Lansing, Michigan 48824-1321, USA
11KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
12CEA-Saclay DSM, F-91191 Gif sur Yvette Cedex, France

(Received 18 June 2015; published 21 August 2015)

Isoscalar giant resonances have been measured in the unstable ^{68}Ni nucleus using inelastic alpha and deuteron scattering at 50A MeV in inverse kinematics with the active target MAYA at GANIL. Using alpha scattering, the extracted isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ± 1.9 MeV and the isoscalar giant quadrupole resonance (ISGQR) to be 15.9 ± 1.3 MeV. Indications for soft isoscalar monopole and dipole modes are provided. Results obtained with both (α,α') and (d,d') probes are compatible. The evolution of isoscalar giant resonances along the Ni isotopic chain from ^{56}Ni to ^{68}Ni is discussed.

DOI: 10.1103/PhysRevC.92.024316 PACS number(s): 21.10.Re, 24.30.Cz, 21.60.Jz, 24.50.+g

I. INTRODUCTION

Measurement of the isoscalar giant resonances (ISGR), and in particular the isoscalar giant monopole resonance (ISGMR) plays an important role in constraining the nuclear equation of state [1]. More precisely, the energy of the ISGMR, that corresponds to a succession of compression/expansion phases of the atomic nucleus, also called the breathing mode, where all the protons and neutrons oscillate in phase, can be linked to the nuclear-matter incompressibility. The nuclear-matter incompressibility has been constrained in the last decades using measurements in stable nuclei that are made up only with symmetric matter or slightly asymmetric matter (in a local density approximation picture). However, measurements in unstable nuclei are lacking in order to study the evolution of the nuclear-matter incompressibility as a function of the neutron-proton asymmetry. Recently, it has been shown that measuring the energy of the ISGMR provides information on the ability to compress the matter around the average density of nuclei, which is typically 70\% of the saturation density. The present work emphasizes the importance of measuring the ISGMR in different nuclei at several neutron-proton asymmetries and several densities.

Moreover, an isoscalar monopole mode at lower energy, called soft monopole mode, has been predicted in neutron-rich nuclei by several relativistic and nonrelativistic models. Recently calculations with an exact treatment of the continuum have also predicted monopole strength in the same energy region. However, this mode is found to be characterized with a larger width and turns out to originate mainly from the continuum background. Such a soft monopole mode has not yet been observed.

Experimentally, the measurement of giant resonances in unstable nuclei is a challenging task which has until now been mainly dedicated to the study of the isovector giant dipole resonance (IVGDR) and the isovector pygmy dipole resonance (IVPDR). Photons are a relevant probe to excite the IVGDR and the IVPDR, thus Coulomb excitation with absorption of a virtual photon has been used, for example, to study the IVGDR and IVPDR in neutron-rich O, Ne, Sn isotopes and in ^{68}Ni [8]. In these studies, the invariant-mass method was used, requiring the detection of all the decay products. These experiments yielded evidence for the appearance of a low-energy dipole mode, the nature of which is still under discussion; it may correspond to an oscillation of a neutron skin against a nucleus core, possibly mixed with isoscalar dipole strength.

In the case of the isoscalar response, the first measurement was performed on the $N = Z$ unstable ^{56}Ni nucleus with deuterons as probe. The ISGMR has been measured at 19.3 ± 0.5 MeV and the isoscalar giant quadrupole resonance (ISGQR) at 16.2 ± 0.5 MeV [11]. The isoscalar giant dipole resonance (ISGDR), a second-order mode corresponding to the so-called squeezing mode, has never been measured in an unstable nucleus. It should be noted that in Ref. [14] relativistic random-phase approximation (RRPA) calculations indicate some substantial isoscalar dipole strength in ^{68}Ni.

Measuring the scattering of radioactive nuclei from light probes requires the use of inverse kinematics and the detection of very low-energy light charged particles. Therefore, a