
Rare-isotope decay links tiny grains to stellar explosions

A newly discovered state of the ³¹S nucleus could help to explain the puzzling isotope ratios found in tiny grains of silicon carbide that are found in some meteorites. The discovery provides important information about how elements such as silicon are created in stellar explosions called novae.

This grain of stardust is abundant in silicon-30.

The new state was discovered by carefully measuring the β -decay of the rare-isotope ³¹Cl. This state could provide a strong resonance in the ³⁰P(p, γ)³¹S reaction and may therefore explain why less ³⁰Si is observed than expected in dust grains from novae.

