The radioactive isotope, 60Fe, is only naturally produced in massive stars and is ejected into the Universe through supernova explosions and the end stages of AGB stars. Trace amounts of 60Fe has been discovered in Earth’s ocean crust, dating back to several millions of years ago. As the half-life of 60Fe is on the order of millions of years, it can be used as a chronometer for past Solar System events.

$T_{1/2}$ of 60Fe has been in question in recent years. Work is currently being done at the NSL to confirm it. The work is two-parted: Using Accelerator Mass Spectrometry and Gas-Filled Magnet techniques, the number of 60Fe atoms in a sample can be measured. Together with an activity measurement on the same sample, the half-life can be calculated.

\[\lambda \frac{dN}{dt} = N \]

During the spring of 2015, the activity measurement was finalized and recently in October 2015, the AMS measurement as been completed. Further work is needed to finalize the half-life.