Radioactivity

• Lecture 22
• Radioactivity in Industry
Industrial Products containing Radioactivity

- Ceramics and Glasses
- Radio luminescent paint
- Camera lenses
- Cosmetic materials
- Camping gas mantles
- Smoke detectors
Ceramics – Fiesta Ware

Fiesta ware is ceramic glazed dinnerware, known for its particular style of concentric rings, it is a highly desired collectors item. The red Fiesta has a detectable amount of uranium oxide in its glaze, which produced the orange-red color. During World War II, the government took control of uranium for development of the atom bomb, and confiscated the company's stocks. Fiesta red was re-introduced in 1959 using depleted uranium (^{238}U).

Whole body exposure by Fiesta ware

<table>
<thead>
<tr>
<th>Distance</th>
<th>10” Plate</th>
<th>3.5” Cup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 foot</td>
<td>6.5×10^{-6} mSv/hr</td>
<td>3.7×10^{-6} mSv/hr</td>
</tr>
<tr>
<td>3 feet</td>
<td>7.7×10^{-7} mSv/hr</td>
<td>4.1×10^{-7} mSv/hr</td>
</tr>
<tr>
<td>6 feet</td>
<td>1.9×10^{-7} mSv/hr</td>
<td>1.1×10^{-7} mSv/hr</td>
</tr>
</tbody>
</table>

Dose Rate

<table>
<thead>
<tr>
<th>Distance</th>
<th>Dose Rate</th>
<th>Effective Dose Equivalent Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>0.240 mGy/hr</td>
<td>0.024 μSv/hr</td>
</tr>
<tr>
<td>1 foot</td>
<td>0.084 mGy/hr</td>
<td>0.021 μSv/hr</td>
</tr>
<tr>
<td>3 feet</td>
<td>0.009 mGy/hr</td>
<td>4.5×10^{-3} μSv/hr</td>
</tr>
</tbody>
</table>

Average human dose: 0.06 μSv/hr
Vaseline Glasses

The glow is artificial, from external UV light, not internal radioactivity!

Uranium glass is glass which has had uranium, usually in oxide diuranate Na, Al ...– U_2O_7 or form, added to a glass mix before melting for coloration. The glass glows greenish in UV light.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Drinking Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 foot</td>
<td>9.0 μSv/h</td>
</tr>
<tr>
<td>3 feet</td>
<td>1.0 μSv/h</td>
</tr>
<tr>
<td>6 feet</td>
<td>0.25 μSv/h</td>
</tr>
</tbody>
</table>
Luminescent Paint

Traditionally used of watches and signs, radium paint is replaced by radio-luminescent tritium paint, which in turn is replaced by photo-luminescent paint.

- Radium paint contains radium (25 to 300 µg) mixed together with a luminescent crystalline powder (ZnS) which makes the glow by scintillation.
- Radio-luminescence lights or signs are glass tubes filled with tritium gas ($T_{1/2}=12y$) that are coated inside with phosphorus.
- Photo-luminescent material emits light under UV radiation.

1.8 Ci = 67 GBq

0.02-0.4 µCi = 740-1480 Bq
Radioactive Camera Lenses

A significant number of lenses produced from the 1940s through the 1970s have measurable radioactivity due to the use of thorium oxide (up to 30% by weight) as a component of the lens glass. The optical properties of Thorium oxide generate high refractivity and low dispersion that minimizes chromatic aberration at a lower curvature, at lower costs.

Typical activity measured for several lens glasses range from 3 to 12Bq. The radiation level can vary between 100-2000 nSv/h as measured at the lens element's surface comparable to a typical chest x-ray exposure.
Saline solution that are used to clean and store contact lenses is sterilized by gamma radiation.

Neutron probes are used to ensure the proper moisture content during the making of the high-quality glass for eyeglasses.

Cosmetics often use gamma radiation to rid products of any microbes before the product is packaged for public consumption.

Radiation often changes the molecular structure of some materials to allow them to absorb huge amounts of liquid. Useful products that rely on this include air fresheners, disposable diapers, and tampons.
Smoke Detectors

Smoke detectors operate on simple principle of absorption of α radiation. Smoke increases the stopping power of air and reduces the flux of α particles into a detector. The α particles are typically produced by a long-lived 241Am source ($T_{1/2}=5 \cdot 10^{10}$y).

1.0 μCi = 100μCi = 37 kBq = 3.7 MBq
Industrial Processes using Radioactivity

- Ion Implantation
- Radioisotope Tracers
- Radiography and Gauging
- Material Modification (solar cells)
- Sterilization (food and fruit)
- Radiation Processing (PIXE, XRF, NAA)
- Nuclear Batteries
Ion Implantation

Ion Implantation has a wide range of applications, in particular in the micro-electronics and chips industry. The implantation of radioactive ions is mainly used for wear and tear tests of new materials, for machines, tools, to artificial hip replacements and limbs.

Material is deposited onto the surface building a solid layer by forming a mixed zone with the to be tested material. The surface is tested and the wear is measured by the decline of the level of radioactivity.

Surface analysis with electron microscope after implantation of different ion-types
Material hardness studies

Application of RNB for high sensitive wear diagnostics in medicine technique and industry

P. Feisenfelda,b, C. Eifrigb, R. Kubata

aForschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany
bLVT Labor für Verschleißtests, L. Frank Str. 39, D-04318 Leipzig, Germany

Traditional Thin Layer Activation with Light Ion Beams

RADIONUCLIDE TECHNIQUE IN MECHANICAL ENGINEERING IN GERMANY

P. Feisenfeld, A. Kleinrahm, H. Schweickert

Kernforschungszentrum Karlsruhe GmbH, Zyklotron, D-7609 Karlsruhe, Postfach 3640 (Germany)

Thin layer activation of large areas for wear study

F. Ditroitha,b, S. Takácsa, F. Tárkányia, M. Reichelb, M. Schergeb, A. Gerveb

aInstitute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO. Box 11, Hungary
bIAF Atomtechnik AG, Karlsruhe, Germany

A STUDY OF THE WEAR IN CERAMIC BEARINGS BY A THIN-LAYER ACTIVATION METHOD

V. V. Sokovikov, V. I. Konstantinov, I. L. Shkarupa, and V. P. Paranosovkov
Example: 7Be implantation ($T_{1/2}=53.3\text{d}$)

$^{12}\text{C}(^3\text{He},2\alpha)^7\text{Be}$ or $^{10}\text{B}(p,\alpha)^7\text{Be}$; secondary radioactive ^7Be is implanted on material samples.

Wear test on different Polyethylen samples with implanted ^7Be ions.
Radioisotope Tracers in Industry

Radioisotopes can be detected with high sensitivity, spurious amounts attached to material allows tracing the material (George de Hevesy, lecture 3).

Frequent application in medical industries and agricultural industries. Further applications are the tracing of chemical reaction with the radioisotope replacing a stable isotope. Other applications are the measurement of wear and tear of new materials, with radioisotopes introduced at the surface.

Wear and tear on engine parts by measuring the increase of radioactivity in the lubricant

Uptake of nutrients doted with radioactive phosphorus ($^{32}\text{P } T_{1/2}=14.26 \text{ d}$) in plants.
Pipe line leaks

Leaky pipelines for liquids can be probed with radioactive ^{24}Na solutions ($T_{1/2}=15\text{h}$) that decays to ^{24}Mg. Leaky gas pipeline can be probed with radioactive noble gases ^{41}Ar ($T_{1/2}=1.83\text{h}$) that decays to ^{41}K or ^{133}Xe ($T_{1/2}=1.25\text{d}$) that decays to ^{133}Cs. The desired isotope half-life is dictated by application and production. The lifetime of the radioisotope should be comparable to the time required for performing the leak tests.
Radiography depends on the absorption (transmission) probability of X-rays or such as α, β, γ radiation through sample matter. On a photographic plate of CCD camera in the back material and the photographic plate to generate an image is formed that results from the difference in absorption probabilities, which is defined by the “absorption coefficient μ for a particular material! The coefficient μ is in units [1/cm], often tabulated as μ/ρ [cm2/g] with ρ being the density of the material [g/cm3].

$$I(d) = I_0 \cdot e^{-\mu \cdot d}$$
Utilizing the range of radiation

The absorption coefficient also depends on the kind of radiation, which is due to the kind of interaction with the material. \(\alpha \) radiation can only be used for thin layers (\(\mu \)m thickness) and gases (smoke detector), \(\gamma \) radiation and neutron radiation can be used for other metal etc. material. Neutron radiography can cause neutron activation because of neutron capture on material. This method requires higher energy neutrons that have lower capture cross sections.
Radiography in Industry

X-ray radiography is typically used in medical applications. The use of higher energy γ sources next to X-ray sources allows to expand the application to industrial parts with higher absorption coefficient.
Gauging with Radioactive Sources

Paper industry thickness and quality test!

Level gauging in the beer to soft drink industry

Tank filling level

Long-lived radioactive α sources are used for these kind of applications!
Purification and Sterilization

Radiation sterilization of medical utensils and cosmetics utilizes X-ray and gamma ray to control the growth of microorganism or even kill them. Radioactive sources commonly used are 60Co and 137Cs.

- Kills bacteria and germs by damaging the DNA. Exception is:
 - Conan the Bacterium: Deinococcus radiodurans
Radiation induced Mutation

Mutation is widely used in developing new plant species by exposing plants to chemical mutagens, UV light and radiation. Radiation introduces random mutations – other than targeted mutations by chemicals. This generates a wide variety of mutant plants and species.

New Chrysanthemum “Ion-no-Seiko”

New Rose-Carnation Mutation

New color pigment in Cyclamen

New Chrysanthemum “Aladin”

New variety with enhanced NO₂ uptake

New rice sort with reduced fertilizer need

<table>
<thead>
<tr>
<th>Mutagen</th>
<th>Mutation frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Light pink</td>
</tr>
<tr>
<td>Not irradiated</td>
<td>0</td>
</tr>
<tr>
<td>Gamma-rays</td>
<td>0</td>
</tr>
<tr>
<td>Carbon ions</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Carnation: Original variety ‘Vital’ with cherry color and serrated petals was used.

<table>
<thead>
<tr>
<th>Mutagen</th>
<th>Mutation frequency (x 10⁻³%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light pink</td>
<td>Pink</td>
</tr>
<tr>
<td>EMS</td>
<td>0</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>1.7</td>
</tr>
<tr>
<td>Gamma-rays</td>
<td>1.7</td>
</tr>
<tr>
<td>Carbon ions</td>
<td>2.4</td>
</tr>
</tbody>
</table>

BURPEE'S NEW CALENDULAS
Nuclear Processing

The analysis and imaging of material can be done by particle induced x-ray emission (PIXE) or x-ray fluorescence (XRF) or neutron activation techniques (NAA). These techniques allow punctual analysis or also the development of images for specific material components.

Particle induced X-ray/γ emission (PIXE/PIGE)

X-ray fluorescence (XRF)
PIXE and XRF
Meet my Great-Great-Great-Great-Great-Grandmother

PbCO₃ (lead-white) white pigment for preparing the backing (canvas, wood) and for highlighting bright areas, today TiO₂ (titanium oxide)

CₓHᵧ+ FeO + CaCO₃ (calcinated Van Dyke Brown) – a local product from the region near Cologne, which was used for the toning of darker brownish areas.

(Fe₄[Fe(CN)₆])₃ (Prussian Blue, based on Fe) - was used for the blue tones of broche – no Cu (Azurite) was observed. **CoAlO₄** (Cobalt Blue or Smalt) was used for sleeve.

CₓHᵧ+ FeO + CaCO₃ (calcinated Van Dyke Brown) – a local product from the region near Cologne, which was used for the toning of darker brownish areas.
XRF for consumer goods

Easy approach for quick analysis of elemental composition of materials

Multiple applications in analysis of merchandise (Chinese toys) to scrap metal, food, & environment
Neutron Activation Analysis (NAA)

Expose material to high neutron flux and add neutrons to nuclei to produce an radioactive isotope with subsequent analysis of elemental components for its characteristic radioactive decay pattern.
Prompt Neutron Activation Analysis
with Am-Be neutron sources

Sorting of security issues at airports

Sorting of waste components by activity analysis

\(^{14}\text{N}(n,\gamma)^{15}\text{N}\) ejecting prompt 10.8 MeV \(\gamma\)-rays

\(^{37}\text{Cl}(n,\gamma)^{38}\text{Cl}\) ejecting prompt 5.6 and 6.11 MeV \(\gamma\)-rays.
Nuclear batteries get their energy from the decay of radioactive material. The lifetime of a battery is associated with the lifetime τ or the half life $T_{1/2}$ of its radioactive fuel:

$$\tau = \frac{1}{\lambda} = \frac{T_{1/2}}{\ln 2} = 1.44 \cdot T_{1/2}$$

Example: radioactive fuel 3H: $\tau = 17.8\ y$, 63Ni: $\tau = 144\ y$, 210Po: $\tau = 200\ d$.

The power P (Watt=Joule/s) generated by the battery depends on the decay energy Q and the activity A of the radioactive fuel at any given time t:

$$P = Q \cdot A = Q \cdot \lambda \cdot N(t) = Q \cdot \frac{N(t)}{\tau} = Q \cdot \frac{N_0 \cdot e^{-\lambda \cdot t}}{\tau}$$

Example: energy release 3H: $Q = 5.7\ keV$, 63Ni: $Q = 66.9\ keV$, 210Po: $Q = 5304\ keV$.

$$A = \frac{P}{Q} \quad 1\ eV = 1.6022 \cdot 10^{-19}\ J$$

Example: activity of a 12W battery 3H: $A = 1.3 \cdot 10^{16}\ Bq$, 63Ni: $A = 1.1 \cdot 10^{15}\ Bq$, 210Po: $A = 1.4 \cdot 10^{13}\ Bq$.

The use is pretty much restricted to micro-batteries with nano-Watt or micro-Watt power output with Giga- to Mega-Becquerel activities (Micro-electronic-mechanical systems MEMS).
Micro-batteries use electric diode techniques to convert the nuclear decay energy into electrical energies for micro-electronic devices. Small scale nuclear batteries expand the longevity compared to micro-batteries based on electro-chemical processes. Batteries powered by nuclear decay have a lifespan of decades and are up to 200 times more efficient.

β articles (electrons) from decay of a radioactive sample generate electron-hole pair in semi-conductor material generating voltage between the electrodes. Radioactive samples should be free from γ radiation to avoid external activity. Used up-batteries are considered nuclear waste!

Applications for electronic units in long-term space missions, nuclear powered pacemakers. The nuclear powered laptop battery Xcell-N has a 150 day life-time! Future Applications: car batteries, deep-sea water probes, and long-term sensors.
Radioisotope Thermoelectric Generator (RTG)

A RTG is an instrument that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electrical voltage.

Thermocouples consist of two wire legs made from different metals. The wires legs are welded together at one end, creating a junction. This junction is where the temperature is measured. When the junction experiences a change in temperature, a voltage is created that generates an electrical current.
A plutonium oxide pellet ($^{238}\text{Pu}^{16}\text{O}_2$), glowing from its own heat, generated by the energy release of 5.6 MeV in the α decay. One gram ^{238}Pu generates thermal power of approximately 0.5 W.
Calculation of Activity and Power

\[^{238}\text{Pu}^{16}O_2 : \quad \text{Mass number is 270.} \quad 270\text{g} \equiv 6.022 \cdot 10^{23} \text{ molecules} \]

4.8 kg of \(^{238}\text{Pu}\) contains

\[N = \frac{4800\text{g} \cdot 6.022 \cdot 10^{23}}{270\text{g}} = 1.07 \cdot 10^{25} \quad ^{238}\text{Pu} \text{ particles} \]

\[T_{1/2} = 87.74 \text{y} = 2.76 \cdot 10^9 \text{s} \]

\[A = \frac{\ln 2}{T_{1/2}} \cdot N = \frac{\ln 2}{2.76 \cdot 10^9 \text{s}} \cdot 1.07 \cdot 10^{25} = 2.69 \cdot 10^{15} \text{ Bq} \]

The Plutonium based RTG battery on the Mars mission contains 2.69 PBq activity; it needs to be shielded because of associated \(\gamma\)-decay radiation that cannot easily be absorbed.

\[P = Q \cdot A = 5.593 \cdot 10^6 \text{ eV} \cdot 2.69 \cdot 10^{15} \text{ Bq} = 8.96 \cdot 10^{-13} \text{ J} \cdot 2.69 \cdot 10^{15} \frac{1}{\text{s}} = 2411 \text{ W} \]

This provides an overall power of about 2400 W with a lifetime of 127 years, after 87 years the power output is reduced to 1200 W.
Nuclear battery efficiencies