Low-lying level structure of 56Cu and its implications to the rp process

The low-lying energy levels of proton-rich 56Cu have been extracted using in-beam γ-ray spectroscopy with the state-of-the-art γ-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in 56Cu serve as resonances in the 55Ni(p,γ)56Cu reaction, which is a part of the rp process in type-I X-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized isobaric multiplet mass equation (IMME) fit is used, resulting in $Q = 639 \pm 82$ keV. We derive the first experimentally constrained thermonuclear reaction rate for 55Ni(p,γ)56Cu. We find that, with this new rate, the rp process may bypass the 56Ni waiting point via the 55Ni(p,γ) reaction for typical X-ray burst conditions with a branching of up to $\sim 40\%$. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the 56Ni region.