Recent data on isoscalar giant monopole resonance in the calcium isotopes $^{40,44,48}\text{Ca}$ have suggested that K_τ, the asymmetry term in the nuclear incompressibility, has a positive value1. A value of $K_\tau > 0$ is entirely incompatible with present theoretical frameworks and, if correct, would have far-reaching implications on our understanding of myriad nuclear and astrophysical phenomena. Our paper presents results of an independent ISGMR measurement with the $^{40,42,44,48}\text{Ca}(\alpha, \alpha')$ reaction at $E_\alpha = 386$ MeV. These results conclusively discount the possibility of a positive value for K_τ, and are consistent with previously-obtained values for this quantity.

$$K_A \approx K_\infty + K_{\text{surf}} A^{-1/3} + K_\tau \eta^2 + K_{\text{Coul}} \frac{Z^2}{A^{4/3}}.$$