Determination of hexadecapole β_4 deformation of the light-mass nucleus ^{24}Mg using quasi-elastic measurement

Quasi-elastic scattering measurements were performed using ^{16}O and ^{24}Mg projectiles off ^{90}Zr at energies around the Coulomb barrier.

Data were analyzed in the framework of coupled channels. Bayesian analysis is carried out for $^{24}\text{Mg} + ^{90}\text{Zr}$ reaction. The hexadecapole deformation of ^{24}Mg has been measured very precisely for the first time.

β_2 and β_4 of ^{24}Mg from present work:

$\beta_2 = +0.43 \pm 0.02$, $\beta_4 = -0.11 \pm 0.02$

The present result clearly demonstrate that quasi-elastic scattering could be a potential probe to determine the ground state deformation of the exotic nuclei using low intensity radioactive ion beams.