

The ²⁴Mg(α ,p)²⁷Al reaction has been identified as an important reaction that influences the energy generation of x-ray bursts, but the contribution from reactions to the excited states of ²⁷Al have not been previously considered. We have measured the ²⁴Mg(α ,p γ)²⁷Al reaction to the first two excited states of ²⁷Al for the first time via the detection of secondary γ rays. The high beam intensity available from the NSL 5U accelerator in conjunction with the high-efficiency LaBr₃ array HAGRiD, allowed for the precise measurement of cross sections. We found that the contribution to the ${}^{24}Mg(\alpha,p){}^{27}AI$ cross section is small, but may become significant for hot astrophysical scenarios.

NSF

T. Ahn et al., Phys. Rev. C **102** 035805 (2020) NSF Grant no. PHY 1713857 & 1430152, and DOE, NNSA, and NRF.

