Investigation of the 10B(p, α)7Be reaction for Boron-Proton Fusion Reactors

A multitude of broad interfering resonances characterize the 10B(p,α)7Be cross section at low energies. The complexity of the reaction mechanism and conflicting experimental measurements have prevented a reliable prediction of the cross section over the energy ranges pertinent for a boron-proton fusion reactor environment. This study targets the proton energy region from 0.8 to 2.0 MeV, where kinematic overlap of the scattered protons and reaction α-particles have made past measurements very challenging.

The new measurements were performed at both Ohio University and the University of Notre Dame using time-of-flight and degrader foil techniques, respectively. A comprehensive R-matrix analysis of the experimental data resulted in a more reliable and consistent description of the 10B(p,α)7Be cross section, reducing the uncertainty from 20% to 10%, and bringing greater clarity to the level structure of the 11C system.

Vande Kolk et al. PRC 105, 055802 (2022)
NSF Grant No. PHY-2011890 and PHY-1430152 (JINA-CEE)