Gravitational Wave Observables (and Observations!) and their Connections to Nuclear Physics

Reed Essick ressick@perimeterinstitute.ca

Perimeter Institute for Theoretical Physics

- **Basic Physics**
- **Current Status**

EoS from adiabatic tidal deformabilities Connections to other astrophysical observations, nuclear theory and experiment

Connections between the Population of Merging Binaries and the EoS

How can we determine whether a GW source contains a NS?

Current Observatories

Current Observatories

Current Observatories

Multi-messenger Hierarchical Bayesian Analysis

There is a limit to the densities we can probe within NSs

supranuclear sound speed almost certainly exceeds the conformal limit (suggests strongly-coupled interactions)

Nonparametric EoS Inference

Legred+(2021)

Nonparametric EoS Inference

	Observable	Prior	w/ PSRs	w/o J0740+6620	$w/J0740{+}6620$	
					Miller+	Riley+
Properties of the EoS	$M_{ m max} [{ m M}_{\odot}]$	$1.47^{+0.71}_{-1.37}$	$2.24_{-0.24}^{+0.48}$	$2.20\substack{+0.30 \\ -0.19}$	$2.21_{-0.21}^{+0.31}$	$2.19_{-0.19}^{+0.27}$
	$p(ho_{ m nuc})~[10^{33}{ m dyn/cm^2}]$	$2.25^{+5.81}_{-2.15}$	$6.07^{+7.53}_{-5.93}$	$4.05_{-3.74}^{+3.59}$	$4.30_{-3.80}^{+3.37}$	$4.15_{-3.76}^{+3.50}$
	$p(2\rho_{ m nuc}) \ [10^{34} { m dyn/cm^2}]$	$1.22^{+4.86}_{-1.21}$	$6.00^{+4.79}_{-5.99}$	$3.75^{+2.36}_{-2.98}$	$4.38^{+2.46}_{-2.96}$	$3.90^{+2.11}_{-2.88}$
	$p(6 ho_{ m nuc})~[10^{35}{ m dyn/cm^2}]$	$2.43_{-2.43}^{+4.70}$	$7.51_{-5.15}^{+6.77}$	$8.33_{-4.14}^{+5.22}$	$7.41_{-4.18}^{+5.87}$	$7.82^{+5.47}_{-3.53}$
	$\max\left\{c_s^2/c^2\right\} \ \ \rho \le \rho_c(M_{\max})$	$0.76^{+0.24}_{-0.37}$	$0.72\substack{+0.28 \\ -0.26}$	$0.84\substack{+0.16 \\ -0.28}$	$0.75\substack{+0.25 \\ -0.24}$	$0.80\substack{+0.20 \\ -0.26}$
	$ ho\left(\max\left\{c_{s}^{2}/c^{2} ight\} ight)\left[10^{15}{ m g/cm^{3}} ight]$	$1.38^{+1.65}_{-1.34}$	$0.97\substack{+0.64 \\ -0.70}$	$1.13\substack{+0.64\\-0.63}$	$1.01\substack{+0.63 \\ -0.53}$	$1.10\substack{+0.63 \\ -0.58}$
	$p\left(\max\left\{c_{s}^{2}/c^{2}\right\}\right) \left[10^{35} \mathrm{dyn/cm^{2}}\right]$	$1.65^{+8.16}_{-1.65}$	$2.68^{+5.18}_{-2.68}$	$3.52^{+6.90}_{-3.48}$	$2.77^{+5.81}_{-2.70}$	$3.26\substack{+6.51 \\ -3.15}$
Properties defined for both NSs and BHs	$R_{1.4}$ [km]	$8.09^{+5.68}_{-3.96}$	$13.54_{-3.13}^{+2.61}$	$12.25_{-1.33}^{+1.13}$	$12.56^{+1.00}_{-1.07}$	$12.34^{+1.01}_{-1.25}$
	$R_{2.0} [\rm km]$	$5.90\substack{+6.97\\-0.00}$	$13.18\substack{+3.02 \\ -2.90}$	$12.05_{-1.45}^{+1.18}$	$12.41_{-1.10}^{+1.00}$	$12.09^{+1.07}_{-1.17}$
	$\Delta R \equiv R_{2.0} - R_{1.4} \; [\text{km}]$	$0.48^{+1.28}_{-6.67}$	$-0.07^{+1.00}_{-1.04}$	$-0.17\substack{+0.85\\-0.83}$	$-0.12\substack{+0.83\\-0.85}$	$-0.20\substack{+0.82\\-0.88}$
	$\Lambda_{1.4}$	24^{+841}_{-24}	795_{-708}^{+1262}	442^{+235}_{-274}	507^{+234}_{-242}	457^{+219}_{-256}
	Λ _{2.0}	0^{+54}_{-0}	66^{+184}_{-66}	34^{+35}_{-27}	44_{-30}^{+34}	35^{+32}_{-24}
Properties defined only for NSs	$ ho_{ m c}(1.4{ m M}_{\odot})~[10^{14}{ m g/cm}^3]$	$8.4_{-6.0}^{+12.5}$	$5.7^{+3.2}_{-3.1}$	$7.2^{+2.6}_{-1.7}$	$6.7^{+1.7}_{-1.3}$	$7.1^{+2.1}_{-1.5}$
	$ ho_{ m c}(2.0{ m M}_{\odot})~[10^{14}{ m g/cm^3}]$	$9.0^{+5.7}_{-6.3}$	$8.5^{+4.8}_{-5.3}$	$10.5^{+4.1}_{-3.8}$	$9.7^{+3.6}_{-3.1}$	$10.4^{+3.6}_{-3.5}$
	$ ho_{ m c}(M_{ m max})~[10^{15}{ m g/cm^3}]$	$2.4^{+0.9}_{-2.0}$	$1.4_{-0.6}^{+0.5}$	$1.6^{+0.3}_{-0.4}$	$1.5^{+0.3}_{-0.4}$	$1.6^{+0.3}_{-0.3}$

Current "Theory Agnostic" Constraints

R(*1.4M*_{_}) ~ 12.5 ± 1 km

Nonparametric EoS Inference

Legred+(2021)

Connection to "new" experimental probes: Neutron Skin Thickness (R_{skin})

Reed+(2021) infer $L \ge 100$ MeV based on $R_{skin} = 0.29 \pm 0.07$ fm. Suggest this implies $R_{1.4} \ge 14$ km.

Essick+ PRC (2021)

Map from nonparametric EoS in β -equilibrium to nuclear params describing the energy per particle near nuclear saturation (n_0 : minimum of E_{SNM})

$$\begin{split} x &= n_p/n & \text{proton fraction} \\ E_{\text{nuc}}(n,x) &= E_{\text{SNM}}(n) + (1-2x)^2 \widehat{S_0(n)} + \mathcal{O}(x^4) & \text{nuclear energy per particle} \\ &= \underbrace{\varepsilon_\beta(n) - \varepsilon_e(n,x)}_n - m_N & \text{symmetric-nuclear-matter}_{on \ 1} \\ E_{\text{SNM}}(n) &= \underbrace{E_0}_n + \frac{1}{2} K_0 \left(\frac{n-n_0}{3n_0}\right)^2 + \cdots & \text{symmetric-nuclear-matter}_{on \ 1} \\ \mu_n &= \mu_p + \mu_e & \text{condition for } \beta\text{-equilib} \end{split}$$

constrained by astro observations (input from nonparametric analysis) measured in the lab (input from terrestrial experiment) modeled as degenerate Fermi gas (input from theory) expressed in terms of derivatives of E_{nuc}

$$\mu_i = \frac{dE}{dN_i}$$

We can also extract "nuclear parameters" directly from nonparametric EoS Without the need for "parametrized EoS models"

Essick+ PRL (2021) Essick+ PRC (2021)

Comparisons with ab initio Chiral Effective Field Theory Calculations

astro data can distinguish between

nuclear experiments probe lower densities

current R_{skin} uncertainty

R_{skin} uncertainty improved by a factor of 2

hypothetical perfect R_{skin} measurement

Essick+ PRL (2021) Essick+ PRC (2021)

 $\begin{array}{l} \mbox{nonparametric prior} \\ \mbox{nonparametric astro-only posterior} \\ \chi EFT + astro posterior \\ \mbox{nonparametric astro+R}_{skin} \mbox{ posterior} \\ \chi EFT + astro+R_{skin} \mbox{ posterior} \end{array}$

improved precision in nuclear experiments is unlikely to affect our knowledge of NS radii without improved theoretical calculations

Comparisons with Terrestrial Nuclear Experiments $_{\rm Prior}$

Essick+ PRC (2021)

maximum a posteriori population model

 ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction rate

Connecting it all together : GW200115

Essick+Landry (2020)