# Beam Optics & RIB Separators

Matt Amthor (Bucknell University) Exotic Beam Summer School Notre Dame, 2022

#### Why beams are useful

Nuclear Physics is an experimental science. We often need particle beams to study many nuclei in our experiments.

#### → Measurement uncertainties

Imperfect measurement tools will bring uncertainties.

#### → Quantum mechanical reality

We measure quantities that have intrinsic widths.

#### → Experiment through interaction

Structure and dynamics are often revealed through interactions with other nuclei (collisions at finite energy).

# What is a beam? An experimental conveyor belt.

# A group of particles with a "small" phase space. Occupy a small space (in x and y) Moving in a similar direction (similar momentum vectors)

#### Small phase space

Think of physical situations where a group of things might satisfy the requirements to be called a "beam."

# Which of these examples could be thought of as a "beam," occupying a small phase space?

- **1.** The molecules of gas in this room
- 2. A swarm of bees coming in and out of their hive
- **3.** Cars and trucks moving along the interstate highway
- 4. Photons emitted by a laser pointer
- 5. Alpha particles scattering from gold nuclei in a foil

# The language of beam dynamics Assume a direction of travel: the "<u>optic axis</u>" ALL coordinates are measured from this. Transverse positions

- x horizontal
- y vertical
- Transverse angles of travel
  - $\circ$  a horizontal deflection (or  $\theta$ )
  - $\circ$  **b** vertical deflection (or  $\phi$ )

#### Small phase space!

Again, we assume that these coordinates are **small** for a beam of particles (i.e. particles are all **near** the optic axis and move **nearly** along it). Examples (simulated) of 2D projections of beam phase spaces.



What you might see on a viewer plate in the beamline.

Would need tracking detectors to see this.



# The language of beam dynamics Other particle properties relative to the <u>optic</u> <u>axis</u> and the <u>central ray</u>

- Central ray is along the optic axis with:  $K = K_0$ ,  $q = q_0$
- Kinetic energy or momentum deviation:  $\delta_K$  or  $\delta_p$ • Relative to  $K_o$ , the kinetic energy of the central ray
- Time-of-flight deviation:  $\Delta t$ 
  - Relative to *t<sub>o</sub>*, the time-of-flight of the central ray

$$\delta_K = (K - K_o)/K_o$$
$$\Delta t = t - t_o$$

# Is it possible for a particle to be on the optic axis but not on the central ray?

- **1**. Yes
- **2.** No
- 3. It depends on whether we're in the upside down.

Examples (simulated) of 2D projections of beam phase spaces.



What you might see on a viewer plate in the beamline.



#### Energy vs. angle distribution

Would need tracking detectors to see this.



# How do we act on beam particles?

Magnetic and electric fields exert a force (the Lorentz force) on charged particles.

- → Magnetic force  $\vec{F} = q\vec{v} \times \vec{B}$
- → Electric force

$$\vec{F} = q\vec{E}$$

#### → Notable features

Magnetic force scales with the velocity.

Both forces scale with the charge of the beam particle.

# Controlling the beam with E and B

- Higher charge state (q) makes both E- and B-fields more effective at bending trajectories
- Higher energy beams -> use magnetic fields
  - Typical  $B \leq 2T$  for iron-yoke magnets
  - Much higher fields possible for air-core magnets
- Lower energy beams -> use electric fields
  - E-fields limited by electrostatic breakdown
  - Simpler construction for low fields

$$ec{F} = qec{v} imes ec{B}$$
  
 $ec{F} = qec{E}$ 

# **E and B -> Particle trajectories**

• Magnetic rigidity:  $B\rho = \frac{p}{d}$ 

• Electric rigidity:

$$E\rho = \frac{2K}{q}$$

Thus we can get the bend radius due to an applied field on a particle.

B - Magnetic field strength

ρ - radius of curvature of beam trajectory

p - momentum

q - charge

E - Electric field strength

K - Kinetic energy

Given the two relations below about the effect of a magnetic field on a particle trajectory, what can we say about the <u>bend radius vs.</u> <u>particle velocity</u> for a constant B and q?  $\vec{F}_{\rm B} = q\vec{v} \times \vec{B}$   $B\rho = \frac{p}{-}$ 

- **1.** Particles of higher velocity will be bent more sharply (smaller  $\rho$ ).
- **2.** Particles of higher velocity will be bent less sharply (larger  $\rho$ ).
- **3.** Particles of all velocities will be bent with the same  $\rho$ .
- 4. These relations do not lead to a clear answer.

# What field shapes do we use in beam optics?

Magnetic and electric multipoles would be a general way to refer to the field configurations. The most popular types:

 Dipoles for bending and separating

- Quadrupoles
   for focusing and defocusing
   [stop here for first order optics]
- Higher order multipoles
   for addressing aberrations
   sextupoles, octupoles, etc.

#### Magnetic Dipole fields (Uniform B-fields)

Typically vertical fields Producing horizontal bends



Beam view of idealized dipole B-field

- Dipoles bend the optic axis of the system
- Dipoles separate or "disperse" particles by rigidity:

<u>Magnetic dipoles</u> separate *p/q* (or "momentum")

<u>Electric dipoles</u> separate *K/q* (or "kinetic energy")

#### Fun fact:

Combining Electric and Magnetic fields lets you **separate by mass**, a **very useful** thing indeed.

#### Magnetic quadrupole fields

Ν

S

(magnetic lenses)

S

Ν

midplane symmetry

Let's draw a quadrupole field!

-----

#### Midplane symmetry

Orienting magnetic poles such that the fields have a symmetry axis on the horizontal plane with:

 $B_x(y) = -B_x(y)$  $B_y(y) = B_y(y)$ 

#### Magnetic quadrupole fields

Ν

(magnetic lenses)

S

Ν



#### Midplane symmetry

Orienting magnetic poles such that the fields have a symmetry axis on the horizontal plane with:

 $B_x(y) = -B_x(y)$ 

 $B_y(y) = B_y(y)$ 

 Quadrupole field strength depends linearly on distance from the center

#### Magnetic quadrupole fields (magnetic lenses)



#### • Midplane symmetry

Orienting magnetic poles such that the fields have a symmetry axis on the horizontal plane with:

 $B_x(y) = -B_x(y)$ 

 $B_y(y) = B_y(y)$ 

 Quadrupole field strength depends linearly on distance from the center

> Quadrupoles that **focus** horizontally will **de-focus** vertically (and vice versa)

Assume a quadrupole vertically focuses a beam at a given distance from its exit. How would the trajectories and the focal length change for particles of higher momentum, *p*?



 $B\rho = \frac{p}{q}$ 

- **1.** They will be bent more sharply and focused later.
- **2.** They will be bent more sharply and focused sooner.
- 3. They will be bent less sharply and focused later.
- 4. They will be bent less sharply and focused sooner.

#### How do we describe the action of an optical system on a beam?

**Taylor expansions** are applied, since the multi-dimensional phase space is contained within small deviations from the central ray.

- → First order Taylor coefficients Give a first-order transfer map Describe basic optics properties Where is the focal plane? What is the dispersion in p?
- Higher order coefficients
   Important for large emittances
   [RIB typically have large emittances]

$$\vec{r} = \begin{pmatrix} x_i \\ a_i \\ y_i \\ b_i \\ t_i \\ \delta_K \end{pmatrix}$$

$$x_f = (x|x)x_i + (x|a)a_i + (x|y)y_i + (x|b)b_i + (x|\delta_K)\delta_K$$

Initial position [single particle]

#### Final position Linearly dependent on each initial coordinate

$$\vec{r} = \begin{pmatrix} x_i \\ a_i \\ y_i \\ b_i \\ t_i \\ \delta_K \end{pmatrix}$$

$$x_f = (x|x)x_i + (x|a)a_i + (x|y)y_i + (x|b)b_i + (x|\delta_K)\delta_K$$

Coefficients depend on the beam optical system design and field settings.

$$(x|a) \equiv (x_f|a_i)$$

Initial position [single particle]

#### **Final position**

Linearly dependent on each initial coordinate

 $ec{r} = egin{pmatrix} x_i \ a_i \ y_i \ b_i \ t_i \ \delta_K \end{pmatrix}$ 

$$\begin{aligned} x_f &= (x|x)x_i + (x|a)a_i + (x|y)y_i + (x|b)b_i + (x|\delta_K)\delta_K \\ a_f &= (a|x)x_i + (a|a)a_i + (a|y)y_i + (a|b)b_i + (a|\delta_K)\delta_K \\ y_f &= (y|x)x_i + (y|a)a_i + (y|y)y_i + (y|b)b_i + (y|\delta_K)\delta_K \\ b_f &= (b|x)x_i + (b|a)a_i + (b|y)y_i + (b|b)b_i + (b|\delta_K)\delta_K \\ t_f &= (t|x)x_i + (t|a)a_i + (t|y)y_i + (t|b)b_i + (t|\delta_K)\delta_K \end{aligned}$$

Initial position [single particle] **Final position** 

Linearly dependent on each initial coordinate



$$x_{f} = (x|x)x_{i} + (x|a)a_{i} + (x|y)y_{i} + (x|b)b_{i} + (x|\delta_{K})\delta_{K}$$

$$a_{f} = (a|x)x_{i} + (a|a)a_{i} + (a|y)y_{i} + (a|b)b_{i} + (a|\delta_{K})\delta_{K}$$

$$y_{f} = (y|x)x_{i} + (y|a)a_{i} + (y|y)y_{i} + (y|b)b_{i} + (y|\delta_{K})\delta_{K}$$

$$b_{f} = (b|x)x_{i} + (b|a)a_{i} + (b|y)y_{i} + (b|b)b_{i} + (b|\delta_{K})\delta_{K}$$

$$t_{f} = (t|x)x_{i} + (t|a)a_{i} + (t|y)y_{i} + (t|b)b_{i} + (t|\delta_{K})\delta_{K}$$

Initial position [single particle] **Final position** 

Linearly dependent on each initial coordinate Many terms are zero due to midplane symmetry

$$\vec{r}_{f} = \begin{pmatrix} x_{f} \\ a_{f} \\ y_{f} \\ b_{f} \\ t_{f} \\ \delta_{K} \end{pmatrix} = \begin{pmatrix} (x|x) & (x|a) & (x|y) & (x|b) & (x|t) & (x|\delta_{K}) \\ (a|x) & (a|a) & (a|y) & (a|b) & (a|t) & (a|\delta_{K}) \\ (y|x) & (y|a) & (y|y) & (y|b) & (y|t) & (y|\delta_{K}) \\ (b|x) & (b|a) & (b|y) & (b|b) & (b|t) & (b|\delta_{K}) \\ (t|x) & (t|a) & (t|y) & (t|b) & (t|t) & (t|\delta_{K}) \\ (\delta_{K}|x) & (\delta_{K}|a) & (\delta_{K}|y) & (\delta_{K}|b) & (\delta_{K}|t) & (\delta_{K}|\delta_{K}) \end{pmatrix} \begin{pmatrix} x_{i} \\ a_{i} \\ y_{i} \\ b_{i} \\ t_{i} \\ \delta_{K} \end{pmatrix}$$

Final positionTransfer MapInitial position[single particle][beam optical system][single particle]

$$\vec{r}_{f} = \begin{pmatrix} x_{f} \\ a_{f} \\ y_{f} \\ b_{f} \\ t_{f} \\ \delta_{K} \end{pmatrix} = \begin{pmatrix} (x|x) & (x|a) & 0 & 0 & 0 & (x|\delta_{K}) \\ (a|x) & (a|a) & 0 & 0 & 0 & (a|\delta_{K}) \\ 0 & 0 & (y|y) & (y|b) & 0 & 0 \\ 0 & 0 & (b|y) & (b|b) & 0 & 0 \\ (t|x) & (t|a) & 0 & 0 & (t|t) & (t|\delta_{K}) \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{i} \\ a_{i} \\ y_{i} \\ b_{i} \\ t_{i} \\ \delta_{K} \end{pmatrix}$$

Final positionTransfer MapInitial position[single particle][beam optical system][single particle]

$$\vec{r}_{f} = \begin{pmatrix} x_{f} \\ a_{f} \\ y_{f} \\ b_{f} \\ t_{f} \\ \delta_{K} \end{pmatrix} = \begin{pmatrix} (x|x) & (x|a) & 0 & 0 & 0 & (x|\delta_{K}) \\ (a|x) & (a|a) & 0 & 0 & 0 & (a|\delta_{K}) \\ \hline 0 & 0 & (y|y) & (y|b) & 0 & 0 \\ 0 & 0 & (b|y) & (b|b) & 0 & 0 \\ \hline (t|x) & (t|a) & 0 & 0 & (t|t) & (t|\delta_{K}) \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{i} \\ a_{i} \\ y_{i} \\ b_{i} \\ t_{i} \\ \delta_{K} \end{pmatrix}$$

Final positionTransfer MapInitial position[single particle][beam optical system][single particle]

Notice: the horizontal and vertical motion are completely independent in first order, given mid-plane symmetry.

## Important Transfer Map Terms and Values

• (x|a) = 0

point-to-point focus in horizontal

- (?|?) = o What map element? point-to-point focus in vertical
- (x|x) = M<sub>x</sub> and (y|y) = M<sub>y</sub> magnifications (horiz. and vert.)
- (a|a) and (b|b)

angular magnifications (H and V)

 (x|δ<sub>K</sub>) "dispersion" - physical separation by particle energy



## Important Transfer Map Terms and Values

• (x|a) = 0

point-to-point focus in horizontal

• (y|b) = o

point-to-point focus in vertical

- (x|x) = M<sub>x</sub> and (y|y) = M<sub>y</sub> magnifications (horiz. and vert.)
- (a|a) and (b|b)

angular magnifications (H and V)

 (x|δ<sub>K</sub>) "dispersion" - physical separation by particle energy



# We want separation at an image

• (x|a) = 0

point-to-point focus in horizontal

• (y|b) = o

point-to-point focus in vertical

- (x|x) = M<sub>x</sub> and (y|y) = M<sub>y</sub> magnifications (horiz. and vert.)
- (a|a) and (b|b)

angular magnifications (H and V)

(x|δ<sub>K</sub>) "dispersion" - physical separation by particle energy

#### **Resolving Power**



Different colors correspond to different particle energies

#### **Resolving power**

$$R = \frac{\left(x | \delta_K\right)}{2\sigma_{xo}(x | x)}$$
 Initial spot width magnification



Different colors correspond to different particle energies

If the dispersion (separation) induced by the dipole in the system is only in energy ( $\delta_{\rm K}$ ), why are there three separate spots for each energy?



If the dispersion (separation) induced by the dipole in the system is only in energy ( $\delta_{\rm K}$ ), why are there three separate spots for each energy?



3 distinct q values (charge states) for each  $\delta_{\kappa}$  value shown What do we want an RIB separator to do?

- Reject the primary beam
   So it doesn't destroy things
- Accept and focus the products
   Large enough apertures
   And careful tuning
- Separate reaction products
   Often physically, rejecting some
- Measure particle properties Z, A, q, K, p, v, m, a, b Individual particle-by-particle measurements can be used and correlated with other detectors









# **Measuring particle properties**



Particles can be further sorted by particle-by-particle tracking:

- Energy loss
- Time-of-flight
- Velocity
- TKE
- Momentum
- Angles
- Position

#### Rare Isotope Beam

- Multiple Species: A, Z, Q (~100)
- Large energy spread
- Large angular spread
- Complicated time structure\*
- Higher order optics are important (need sext. & oct.)

More types of larger aperture magnets in longer systems (for multi-stage separation)

#### **Stable Beam**

• Single Species\*

VS.

- Small energy spread
- Small angular spread
- Well-defined time structure\*
- First order optics often sufficient



# You can't always get what you want.

Magnetic and electric multipoles would be a general way to refer to the field configurations. The most popular types:

- Liouville's theorem
   You can't shrink the phase space
- → Field quality
   A dipole isn't always just a dipole
- Apertures and field strengths
   Cost, field quality, and resolving
   power req. all limit acceptance

# System limitation - Liouville's Theorem

The volume of phase space occupied by the particle beam is <u>invariant</u> when traversing electromagnetic fields.\*



\*In systems with no energy gain or loss (i.e. no acceleration and no degrader materials)

# **Field Quality**

#### → Field inside the dipole isn't uniform

- Curved lines show residual field.
- These act like higher order multipoles.
- The shape will be field dependent.









#### What we've seen:

**Beam optics** allows us to transmit, separate, and identify the products of nuclear reactions:

- Using E and B fields
   Dipole, quadrupole, sextupole...
- Taylor expansion description
   Framework to define beam
   optical system properties
- Within limits of theory/systems
   Liouville's theorem, acceptance, field quality, resolving power

#### More questions?