Nuclear Reactions Experiment - I

EBSS 2022

CALEM R. HOFFMAN
Physicist
Argonne National Laboratory

OVERVIEW

Lecture 1 Focus: Overview of Nuclear Reactions
Lecture 2 Focus: Example using single-particle transfer reactions

- Understanding different types / forms of reactions is key
- Integrated into measurements, New physics directly, Isotope production
- Reaction Formalism
- Overview of some reaction types
- Example cases of complementary reactions

Lecture 1 Takeaways:

- Familiarity with reaction "language"
- List various reaction types \& their general properties
- Link reaction method and/or probe to physics quantities of interest
- How multiple reactions are used to explore common physics goals

REACTIONS LINK VARIOUS ASPECTS OF NUCLEAR SCIENCE

REACTIONS LINK VARIOUS ASPECTS OF NUCLEAR SCIENCE

Methods / Tools

REACTIONS LINK VARIOUS ASPECTS OF NUCLEAR SCIENCE

REACTIONS LINK VARIOUS ASPECTS OF NUCLEAR SCIENCE

ISOTOPE DISCOVERY

Leveraging various reaction types / energies / facilities

THE NUCLIDE TRAIL
Isotope discovery over the past 100 years (below) has jumped with each introduction of new technology. Some 2,700 radioactive isotopes have been discovered so far (below right), but about 3,000 more are predicted to exist.

Isotope-discovery technique

Light particle reactionsNeutron reactions FusionFragmentation/spallation

REACTION TYPES / ENERGIES / PHYSICS MOTIVATION
 Many methods with overlapping science goals

BREAKDOWN IN COULOMB BARRIER REGION Physics goals may be encompassed by various reaction types

SOME BASIC REACTION FORMALISM / NOTATION

Pragmatic way of writing nuclear reactions

The ingredients

- Target (A)
- Projectile (a)
- Beam-like outgoing ion (b)
- Target-like outgoing ion (recoil) (B)

Other Considerations

- Inverse kinematics [rare-isotope beams, $\mathrm{MeV} / \mathrm{u}$]
- near-Coulomb energies
- Low energy (<20 MeV/u) to Intermediate energy (50-few
 hundred $\mathrm{MeV} / \mathrm{u}$)

For most reactions it is the (a, b) of $A(a, b) B$ that is used to label the reaction

REACTION TYPES

TYPES OF NUCLEAR REACTIONS

Beam energies range from eV / u to $\mathrm{GeV} / \mathrm{u}$

- Direct reactions
- Knockout - single / multi-particle
- Transfer - single / multi-nucleon / charge-exchange
- Scattering
- Inelastic / Elastic / Resonance
- Fusion
- Compound - Evaporation / Fission
- Capture
- Neutron / Proton / Alpha / Induced reactions
- Others
- Heavy-ion collisions / Fragmentation / Deep inelastic collisions / etc...

FUSION REACTIONS

Fusion \& fusion-fission: ${ }^{12} \mathrm{C}\left({ }^{(} \mathrm{C}, \mathrm{x}\right), \mathrm{Th}\left({ }^{15} \mathrm{C}, \mathrm{X}\right)$

KEY POINTS

- <10 MeV/u
- No "memory" of formation
- Size \& shape of barrier
- Relevance to stellar processes \& heavyelement creation

Extract: excitation functions, angular momenta
Deduce: barrier heights, fusion probabilities, S-factors
Tools: various cross section codes [HF approach / PACE / CASCADE / HIVAP / etc...]

FUSION REACTIONS

Fusion evaporation: ${ }^{20} \mathrm{Ne}\left({ }^{22} \mathrm{Ne}, \mathrm{a} 2 \mathrm{n}\right){ }^{36} \mathrm{Ar}$

KEY POINTS

- Compound has no "memory" of construction
- Population along yrast line
- Provides alignment
- Prolific tool in gamma-ray spectroscopy

Extract: Level \& decay schemes, angular momenta, transition strengths
Deduce: nuclear shapes, entry distributions, deformation parameters
Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

FUSION REACTIONS
 Fusion evaporation: ${ }^{20} \mathrm{Ne}\left({ }^{22} \mathrm{Ne}, \alpha 2 \mathrm{n}\right){ }^{36} \mathrm{Ar}$

Extract: Level \& decay schemes, angular momenta, transition strengths
Deduce: nuclear shapes, entry distributions, deformation parameters
Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

FUSION REACTIONS

Fusion evaporation: ${ }^{20} \mathrm{Ne}\left({ }^{22} \mathrm{Ne}, \mathrm{a} 2 \mathrm{n}\right){ }^{36} \mathrm{Ar}$

Extract: Level \& decay schemes, angular momenta, transition strengths Deduce: nuclear shapes, entry distributions, deformation parameters

KEY POINTS

- Compound has no "memory" of construction
- Population along yrast line
- Provides alignment
- Prolific tool in gamma-ray spectroscopy

Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

FUSION REACTIONS

Fusion evaporation: ${ }^{20} \mathrm{Ne}\left({ }^{22} \mathrm{Ne}, \mathrm{a} 2 \mathrm{n}\right){ }^{36} \mathrm{Ar}$

KEY POINTS

- Compound has no "memory" of construction
- Population along yrast line
- Provides alignment
- Prolific tool in gamma-ray spectroscopy

Extract: Level \& decay schemes, angular momenta, transition strengths
Deduce: nuclear shapes, entry distributions, deformation parameters
Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

SCATTERING REACTIONS
 Coulomb excitation \& Coulomb dissociation

KEY POINTS

- Safe < Coulomb barrier $\sim 3 \mathrm{MeV} / \mathrm{u}$
- Intermediate > Coulomb barrier
- Dissociation > 250 MeV/u
- Electromagnet probe (virtual photon flux)
- Deformation
- Capture rates
- Equipped for inverse kinematics
$\sigma_{\pi \lambda} \approx\left(\frac{Z_{\text {pro }} e^{2}}{\hbar c}\right)^{2} \frac{\pi}{e^{2} b_{\text {min }}^{2 \lambda-2}} B(\pi \lambda, 0 \rightarrow \lambda) \begin{cases}1 /(\lambda-1) & \text { for } \lambda \geqslant 2 \\ 2 \ln \left(b_{a} / b_{\text {min }}\right) & \text { for } \lambda=1\end{cases}$

Excitation of ${ }^{34} \mathrm{Si}$ to ${ }^{34}{ }^{3}{ }^{*}$:

Extract: transition strengths
Deduce: deformation parameters

Reaction Rates for ${ }^{26} \mathrm{Si}(\mathrm{p}, \mathrm{p})$ from dissociation ${ }^{27} \mathrm{P}$ to ${ }^{26} \mathrm{Si}+\mathrm{p}$:
Extract: Survival probabilities, El strengths Deduce: capture rates

SCATTERING REACTIONS
 Coulomb excitation \& Coulomb dissociation

KEY POINTS

- Safe < Coulomb barrier ~3 MeV/u

$$
N_{A}\langle\sigma v\rangle^{\mathrm{tot}}=\sum_{i} N_{A}\langle\sigma v\rangle_{i}^{\mathrm{res}}+N_{A}\langle\sigma v\rangle^{\mathrm{dc}}
$$

$\sigma_{\pi \lambda} \approx\left(\frac{Z_{\text {pro }} e^{2}}{\hbar c}\right)^{2} \frac{\pi}{e^{2} b_{\min }^{2 \lambda-2}} B(\pi \lambda, 0 \rightarrow \lambda) \begin{cases}1 /(\lambda-1) & \text { for } \lambda \geqslant 2 \\ 2 \ln \left(b_{a} / b_{\min }\right) & \text { for } \lambda=1\end{cases}$

Excitation of ${ }^{34} \mathrm{Si}$ to ${ }^{34}{ }^{3}{ }^{*}$:

Extract: transition strengths
Deduce: deformation parameters

Reaction Rates for ${ }^{26} \mathrm{Si}(\mathrm{p}, \mathrm{p})$ from dissociation ${ }^{27} \mathrm{P}$ to ${ }^{26} \mathrm{Si}+\mathrm{p}$:
Extract: Survival probabilities, El strengths Deduce: capture rates

SCATTERING REACTIONS
 Elastic \& resonance scattering (p,p), (d,d), (α, α)

KEY POINTS

- Few to hundreds $\mathrm{MeV} / \mathrm{u}$
- Sensitive to probe: proton, deuteron, alpha, etc.
- Scan in angle and/or energy
- Resonance params on analog states
- sp structure
- Widths
- Key in development of optical model description of nuclear potential

Extract: angular distributions, analog states
Deduce: sp states, optical model parameters, resonance/decay widths
Tools: R-Matrix, optical model calculations [DWBA, coupled channels, etc...]

SCATTERING REACTIONS

Elastic \& resonance scattering (p,p), (d,d), (α, α)

KEY POINTS

- Few to hundreds $\mathrm{MeV} / \mathrm{u}$
- Sensitive to probe: proton, deuteron, alpha, etc.
- Scan in angle and/or energy
- Resonance params on analog states
- sp structure
- Widths
- Key in development of optical model description of nuclear potential

Extract: angular distributions, analog states
Deduce: sp states, optical model parameters, resonance/decay widths
Tools: R-Matrix, optical model calculations [DWBA, coupled channels, etc...]

SCATTERING REACTIONS

Inelastic scattering: ($\left.p, \mathrm{p}^{\prime}\right),\left(\mathrm{d}, \mathrm{d}^{\prime}\right),\left(\mathrm{a}, \mathrm{a}^{\prime}\right),\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}^{\prime}\right)$

KEY POINTS

- Few to 100 's of MeV/ u
- Selective to probe:
- Proton - isovector
- Deuteron isoscalar
- Resonance structures
- Cluster structures
- Collective features in nuclei

Extract: Distributions, resonance strengths
Deduce: unique excitation modes, clustering prob., isoscalar / isovector modes, deformation length Tools: R-Matrix, optical model calculations [DWBA, CC, etc...]

SCATTERING REACTIONS

Inelastic scattering: (p,p), (d, d'), ($\left.\alpha, \alpha^{\prime}\right),\left({ }^{12} \mathbf{C}^{12} \mathbf{}^{\prime}{ }^{\prime}\right)$

KEY POINTS

- Few to 100 's of MeV/ u
- Selective to probe:
- Proton - isovector
- Deuteron isoscalar
- Resonance structures
- Cluster structures
- Collective features in nuclei

Deduce: unique excitation modes, clustering prob., isoscalar / isovector moaes, aerormation iengtn Tools: R-Matrix, optical model calculations [DWBA, CC, etc...]

HEAVY-ION COLLISIONS
 ${ }^{A} \mathrm{Sn}+{ }^{\text {ASn }}, \mathrm{ANi}+{ }^{\text {ANi }}$

KEY POINTS

- >350 MeV/u
- Pion production threshold >280 MeV
- Hot dense matter
- Stars
- Pion production as a test of the symmetry energy

Extract: pion production, +/- asymmetry Deduce: Symmetry energy, equation of state

HEAVY-ION COLLISIONS
 ${ }^{A} \mathrm{Sn}+{ }^{A} \mathrm{Sn}, \mathrm{ANi}+{ }^{\mathrm{A} N i}$

KEY POINTS

- >350 MeV/u
- Pion production threshold >280 MeV
- Hot dense matter
- Stars
- Pion production as a test of the symmetry energy

Extract: pion production, +/- asymmetry Deduce: Symmetry energy, equation of state

DIRECT REACTIONS

Single-nucleon transfer: (d,p), (${ }^{(3 \mathrm{He}, \mathrm{d}),\left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right)}$

KEY POINTS

- ~3-20 MeV/u
- Highly selective
- Direct probe of single-particle aspects
- Surrogate (p, γ) / (n, γ)
- resurgence in the RIB era
- Beam production

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Single-nucleon transfer: (d,p), ($\left.{ }^{3} \mathrm{He}, \mathrm{d}\right),\left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right)$

KEY POINTS

- ~3-20 MeV/u
- Highly selective
- Direct probe of single-particle aspects
- Surrogate ($\mathrm{p}, \mathrm{\gamma}$) / (n, y)
- resurgence in the RIB era
- Beam production

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Single-nucleon transfer: (d,p), (3He,d), ($\left.{ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right)$

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Single-nucleon transfer: (d,p), ($\left.{ }^{3} \mathrm{He}, \mathrm{d}\right),\left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right)$

KEY POINTS

- ~3-20 MeV/u
- Highly selective
- Direct probe of single-particle aspects
- Surrogate ($\mathrm{p}, \mathrm{\gamma}$) / (n, y)
- resurgence in the RIB era
- Beam production

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Multi-nucleon transfer e.g., (p,t), (7Li,t), (6Li,p)

KEY POINTS

- ~3-20 MeV/u
- selective
- Alpha-like transfer: (α, y), (α, X)
- Sensitive to paring (2n)
- Exploratory - cluster / rotational states
- resurgence in the RIB era

Extract: final state angular momenta, spectroscopic overlaps, resonance widths Deduce: resonance strengths, reaction rates, pair occupancies, collectivity
Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Multi-nucleon transfer e.g., (p,t), ($7 \mathrm{Li}, \mathrm{t}$), ($(\mathrm{Li} \mathrm{i}, \mathrm{p})$

KEY POINTS

- ~3-20 MeV/u
- selective
- Alpha-like transfer: (α, y), (α, X)
- Sensitive to paring (2n)
- Exploratory - cluster / rotational states
- resurgence in the RIB era
$\frac{0^{+}, 69 \%}{{ }^{96} \mathrm{Mo}_{54}} \frac{0^{+}, 86 \%}{{ }^{98} \mathrm{Mo}_{56}} \quad \frac{0^{+}, 100 \%}{{ }^{100} \mathrm{Mo}_{58}}{ }^{102} \mathrm{Mo}_{60}{ }^{0^{+}, 77 \%} \quad \frac{0^{+}}{{ }^{104} \mathrm{Mo}_{62}} \frac{0^{+}}{{ }^{106} \mathrm{Mo}_{64}}$
Transitions strengths normalised to ${ }^{100} \mathrm{Mogs}$.

Extract: final state angular momenta, spectroscopic overlaps, resonance widths Deduce: resonance strengths, reaction rates, pair occupancies, collectivity
Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Multi-nucleon transfer e.g., (p,t), ($7 \mathrm{Li}, \mathrm{t}$), (${ }^{(6 \mathrm{Li}, \mathrm{p})}$

$\frac{0^{+}, 69 \%}{96 \mathrm{Mo}_{54}} \frac{0^{+}, 86 \%}{{ }^{98} \mathrm{Mo}_{56}} \quad \frac{0^{+}, 100 \%}{{ }^{100} \mathrm{Mo}_{58}}{ }^{102} \mathrm{Mo}_{60}{ }^{0^{+}, 77 \%} \quad \frac{0^{+}}{{ }^{104} \mathrm{Mo}_{62}} \frac{0^{+}}{{ }^{106} \mathrm{Mo}_{64}}$
Transitions strengths normalised to ${ }^{100} \mathrm{Mogs}$.

Extract: final state angular momenta, spectroscopic overlaps, resonance widths
Deduce: resonance strengths, reaction rates, pair occupancies, collectivity
Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Charge-exchange: (p,n), (7Li, $\left.{ }^{7} \mathrm{Be}\right)$

KEY POINTS

- ~5-400 MeV/u
- Isobaric analog states

- Gamow-Teller distributions
- Astrophysics
- Neutrino physics
- Beam production method

Extract: angular distributions, isobaric analog states
Deduce: Gamow-Teller strength distributions, level densities, g-strength functions
Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

Charge-exchange: (p,n), (7Li, ${ }^{7 B e}$)

$$
\mathrm{B}\left(\mathrm{GT}_{ \pm}\right)=\frac{1}{2 J_{i}+1}\left|\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \sigma_{j} \boldsymbol{\tau}_{ \pm, j}\right\| \Psi_{i}\right\rangle\right|^{2}
$$

KEY POINTS

- ~5-400 MeV/u
- Isobaric analog states
- Gamow-Teller distributions
- Astrophysics
- Neutrino physics
- Beam production method

Initial nucleus

Target

Initial nucleus

Final nucleus

Final nucleus

Extract: angular distributions, isobaric analog states
Deduce: Gamow-Teller strength distributions, level densities, g-strength functions
Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS

KEY POINTS

Charge-exchange: (p,n), (${ }^{\left.7 \mathrm{Li},{ }^{7} \mathrm{Be}\right)}$

$$
\mathrm{B}\left(\mathrm{GT}_{ \pm}\right)=\frac{1}{2 J_{i}+1}\left|\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \sigma_{j} \tau_{ \pm, j}\right\| \Psi_{i}\right\rangle\right|^{2}
$$

- ~5-400 MeV/u
- Isobaric analog states
- Gamow-Teller distributions
- Astrophysics
- Neutrino physics
- Beam production method

Extract: angular distributions, isobaric analog states

Final nucleus

Excitation Energy [MeV]

Deduce: Gamow-Teller strength distributions, level densities, g-strength functions
Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS
 Quasi-free \& nucleon knockout: (p,2p), (9Be, -2p)

KEY POINTS

- >50 MeV/u knockout
- >350 MeV/u quasi-free knockout
- selective to hole states

- Study of overlaps w/ established tools
- Pairing force
- Efficient in the RIB era

Extract: orbital angular momenta, spectroscopic overlaps
Deduce: occupancies, single-particle energies, pairing strengths
Tools: Eikonal \& Glauber model, impulse approximation, Coupled channels calculations, etc...

DIRECT REACTIONS
 Quasi-free \& nucleon knockout: (p,2p), (${ }^{9} \mathrm{Be},-2 \mathrm{p}$)

KEY POINTS

- >50 MeV/u knockout
- >350 MeV/u quasi-free knockout
- selective to hole states

- Study of overlaps w/ established tools
- Pairing force
- Efficient in the RIB era
residue moment distribution
$\rightarrow \ell$-value of knocked-out n

Extract: orbital angular momenta, spectroscopic overlaps
Deduce: occupancies, single-particle energies, pairing strengths
Tools: Eikonal \& Glauber model, impulse approximation, Coupled channels calculations, etc...

DIRECT REACTIONS
 Quasi-free \& nucleon knockout: (p,2p), (9Be, $-2 p$)

KEY POINTS

- >50 MeV/u knockout
- >350 MeV/u quasi-free knockout
- selective to hole states
- Study of overlaps w/ established tools
- Pairing force
- Efficient in the RIB era

Extract: orbital angular momenta, spectroscopic overlaps
Deduce: occupancies, single-particle energies, pairing strengths
Tools: Eikonal \& Glauber model, impulse approximation, Coupled channels calculations, etc...

DIRECT REACTIONS
 Quasi-free \& nucleon knockout: (p,2p), (${ }^{9} \mathrm{Be},-2 \mathrm{p}$)

Initial nucleus [beaml

KEY POINTS

- >50 MeV/u knockout
- >350 MeV/u quasi-free knockout
- selective to hole states
- Study of overlaps w/ established tools
- Pairing force
- Efficient in the RIB era

INTERMEDIATE ENERGY FRAGMENTATION

Create \& populate isotopes at the extremes >100 MeV/u

DEEP INELASTIC REACTIONS

Production of exotic nuclei via multi-nucleon removal + exchange

CAPTURE REACTIONS

p,n,o cross sections key to proliferation \& astrophysics

COMPLEMENTARITY OF NUCLEAR REACTIONS

ISOMERIC BEAM PRODUCTION

Desire a beam of ${ }^{34} \mathrm{Cl}$ residing in either (or both) isomeric \& ground states
$34 \mathrm{~g}, \mathrm{mCl}(\mathrm{p}, \mathrm{\gamma})$ rates influence ${ }^{34} \mathrm{~S}$ production in classical novae impacting solar grain classification

A=35 Mirror Pair
Partial Level \& Decay Schemes

$34 \mathrm{~g}, \mathrm{~m} \mathrm{Cl}(\mathrm{d}, \mathrm{p})$ mirror reaction is of interest

ISOMERIC BEAM PRODUCTION
Sub-set of beam production options
$34 m, g \mathrm{Cl}(\mathrm{Z}=17, \mathrm{~N}=17)$

ISOMERIC BEAM PRODUCTION

Sub-set of beam production options

Transfer Reactions

- proton adding: (d,n), (3He,d)
- Neutron removal: (d,t), (3He, a)
- Charge exchange: (p,n)
- Multi-nucleon: (d, α), (α, d), (α, n)

ISOMERIC BEAM PRODUCTION

Sub-set of beam production options

Transfer Reactions

- proton adding: (d,n), (3He,d)
- Neutron removal: (d,t), (3He, a)
- Charge exchange: (p,n)
- Multi-nucleon: (d, α), (α, d), (α, n)

ISOMERIC BEAM PRODUCTION

Sub-set of beam production options
Fragmentation $>100 \mathrm{MeV} / \mathrm{u}$

- ${ }^{36} \mathrm{Ar}+\mathrm{Be}$: pn removal
- ${ }^{40} \mathrm{Ca}+\mathrm{Be}$ apn removal

ISOMERIC BEAM PRODUCTION

Sub-set of beam production options

Fusion Evaporation

- ${ }^{16} \mathrm{O}(20 \mathrm{Ne}, \mathrm{pn}),{ }^{24} \mathrm{Mg}\left({ }^{(12} \mathrm{C}, \mathrm{pn}\right),{ }^{27} \mathrm{Al}\left({ }^{12} \mathrm{C}, \mathrm{an}\right)$

ISOMERIC BEAM PRODUCTION

Sub-set of beam production options

Fusion Evaporation

- ${ }^{16} \mathrm{O}(20 \mathrm{Ne}, \mathrm{pn}),{ }^{24} \mathrm{Mg}\left({ }^{(12} \mathrm{C}, \mathrm{pn}\right),{ }^{27} \mathrm{Al}\left({ }^{12} \mathrm{C}, \mathrm{an}\right)$

Other Possible Reactions:

- Resonance scattering ${ }^{33} S(p, \gamma)$
- Electron capture
- Spallation

KEY ASTROPHYSICS REACTIONS RATES

Requires knowledge of resonance energies, spins, widths (overlaps), ...
thermonuclear reaction rate:
$\langle\sigma v\rangle=\sqrt{\frac{8}{\pi \mu}} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} \sigma(E) E e^{-E / k T} d E$:
partial width

$$
\Gamma_{x}=C^{2} S_{x} \times \Gamma_{x}^{s . p .}
$$

s-factor

C

$$
S(E)=\sigma(E) \times E \times e^{2 \pi \eta}
$$

KEY ASTROPHYSICS REACTIONS RATES

Requires knowledge of resonance energies, spins, widths (overlaps), ...
thermonuclear reaction rate:
$\langle\sigma v\rangle=\sqrt{\frac{8}{\pi \mu}} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} \sigma(E) E e^{-E / k T} d E$:
resonance capture

$$
\sigma(E)=\frac{\lambda^{2}}{4 \pi} \frac{2 J_{C^{*}}+1}{\left(2 J_{A}+1\right)\left(2 J_{x}+1\right)} \frac{\Gamma_{x} \Gamma_{y}}{\left(E-E_{r}\right)^{2}+\Gamma^{2} / 4}
$$

partial width

$$
\Gamma_{x}=C^{2} S_{x} \times \Gamma_{x}^{s . p .}
$$

s-factor

$$
S(E)=\sigma(E) \times E \times e^{2 \pi \eta}
$$

14O(A,P) ${ }^{17 F}$ REACTION RATE hot-CNO breakout in type-I x-ray bursts

EXAMINATION OF THE ROLE OF THE ${ }^{14} \mathrm{O}(\alpha$,

PHYSICAL REVIEW C 90,025803 (2014)

$E_{x}(\mathrm{MeV})^{n}$	$E_{\text {res }}(\mathrm{MeV})^{\text {n }}$	J^{*}	$\Gamma_{\alpha}(\mathrm{eV})$	$\Gamma_{P}(\mathrm{keV})$	$\Gamma_{p^{\prime}}(\mathrm{keV})$	$\Gamma(\mathrm{keV})$	$\omega \gamma$ (MeV)
5.153 ± 0.01	0.039	$3{ }^{-}$	$4.3 \times 10^{-52 a}$	$1.7{ }^{\text {a }}$		$\leqslant 15^{\text {a }}$	3.0×10^{-57}
6.150 ± 0.01	1.036	1^{-}	$3.9 \pm 1.0^{\text {b }}$	$37.8 \pm 1.9{ }^{\text {c }}$	15.9 ± 0.7^{c}	$53.7 \pm 2.0^{\text {c }}$	1.2×10^{-5}
6.286 ± 0.01	1.172	$3-$	$0.34{ }^{\text {a }}$	$20 \pm 15^{\text {d }}$		$20 \pm 15^{\text {d }}$	2.4×10^{-6}
7.05 ± 0.03	1.936	4^{+}	$22.6 \pm 3.2^{\text {e }}$	90 ± 40^{5}		90 ± 40^{f}	2.0×10^{-4}
7.35 ± 0.02	2.236	2^{+}	$40 \pm 30^{\prime}$	70 ± 60^{f}		70 ± 60 f	2.0×10^{-4}
7.62 ± 0.02	2.506	$1-$	$1000 \pm 120^{\circ}$	72 ± 20^{t}	$<2^{\text {f }}$	75 ± 20 ?	3.0×10^{-3}
7.94 ± 0.01	2.826	3^{-}	$(11 \pm 6.6) \times 10^{7 \mathrm{E}}$	35 ± 15^{2}	9.0 ± 5.6^{2}	55 ± 20^{8}	6.2×10^{-2}

${ }^{14} \mathrm{O}(\mathrm{A}, \mathrm{P}){ }^{17} \mathrm{~F}$ REACTION RATE hot-CNO breakout in type-I x-ray bursts

Exploring the mirror states in ${ }^{18} \mathrm{O}$

- ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{p})$: neutron transfer
- C²S values of mirror state, E, π
- ${ }^{16} \mathrm{O}(\mathrm{t}, \mathrm{p})$: 2 n transfer
- E, π of mirror levels
- ${ }^{14} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right)$: alpha transfer
- Alpha width of mirror state

${ }^{14} \mathrm{O}(\mathrm{A}, \mathrm{P}){ }^{17} \mathrm{~F}$ REACTION RATE hot-CNO breakout in type-I x-ray bursts

Multi-particle transfer reactions

- ${ }^{16} \mathrm{O}(3 \mathrm{He}, \mathrm{n}): 2 \mathrm{p}$ transfer
- ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C}, 6 \mathrm{He}\right)$: exotic transfer
- ${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{t}):-2 \mathrm{n}$ removal
- Selective reactions
- Determine resonance E, total widths (Г), L(J), π

${ }^{14} \mathrm{O}(\mathrm{A}, \mathrm{P}){ }^{17} \mathrm{~F}$ REACTION RATE hot-CNO breakout in type-I x-ray bursts

Elastic / resonance scattering

- 17F(p,p): inverse proton scattering
- (p,p’) contributions
- Determine resonance E, partial widths (Г), L(J), п
- R-Matrix interpretation

${ }^{14} \mathrm{O}(\mathrm{A}, \mathrm{P}){ }^{17} \mathrm{~F}$ REACTION RATE hot-CNO breakout in type-I x-ray bursts

Elastic / resonance scattering

- ${ }^{17} \mathrm{~F}(\mathrm{p}, \mathrm{p})$: inverse proton scattering
- (p,p’) contributions
- Determine resonance E, partial widths (Г), L(J), п
- R-Matrix interpretation

SINGLE-PARTICLE STRENGTHS
 Complementary reactions: ${ }^{136} \mathrm{Xe}(\mathrm{p}, \mathrm{p})$ and ${ }^{136} \mathrm{Xe}(\mathrm{d}, \mathrm{p})$

SINGLE-PARTICLE STRENGTHS
 Complementary reactions: ${ }^{136} \mathrm{Xe}(\mathrm{p}, \mathrm{p})$ and ${ }^{136} \mathrm{Xe}(\mathrm{d}, \mathrm{p})$

SINGLE-PARTICLE STRENGTHS
 Complementary reactions: ${ }^{136} \mathrm{Xe}(\mathrm{p}, \mathrm{p})$ and ${ }^{136} \mathrm{Xe}(\mathrm{d}, \mathrm{p})$

SINGLE-PARTICLE STRENGTHS
 Complementary reactions: ${ }^{136} \mathrm{Xe}(\mathrm{p}, \mathrm{p})$ and ${ }^{136} \mathrm{Xe}(\mathrm{d}, \mathrm{p})$

CONCLUDING REMAKES ON LECTURE I

- Understanding different types / forms of reactions is key
- Integrated into measurements, New physics directly, Isotope production
- Reaction Formalism
- Overview of some reaction types
- Example cases of complementary reactions

Lecture 1 Takeaways:

- Familiarity with reaction "language"
- List various reaction types \& their general properties
- Link reaction method and/or probe to physics quantities of interest
- How multiple reactions are used to explore common physics goals

RESOURCES
 Less than complete set of links / references: crhoffman@anl.gov

Review

Low energy nuclear physics with active targets and time projection chambers
D. Bazin, ${ }^{\text {a,b** }}$, T. Ahn ${ }^{\text {c }}$, Y. Ayyad ${ }^{\text {a }}$, S. Beceiro-Novo ${ }^{\text {b }}$, A.O. Macchiavelli ${ }^{\text {d }}$, W. Mittig ${ }^{\text {ab }}$, J.S. Randhawa ${ }^{\text {a }}$

Transfer reactions as a tool in Nuclear Astrophysics
 Faïrouz Hammache ${ }^{1^{1, *}}$ and Nicolas de Séréville ${ }^{1, *}$

Single-nucleon knockout reactions at fragmentation beam energies J. A. Tostevin*

Department of Physics, School of Physics and Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Sub-Coulomb α Transfers on ${ }^{12} \mathrm{C}$ and the ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O} S$ Factor
C.R. Brune. ${ }^{1}$ W.H. Geist. ${ }^{1, *}$ R. W. Kavanagh, ${ }^{2}$ and K.D. Veal ${ }^{1, *}$

University of North Caroliza, Chapel Hill, North Carolina 27599-3255
Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 'W.K. Kellogg Radiation Laboratory, Calljorouna Inststutere of fechnology, Pasadena, California 91125
(Received 17 June 1999)

PHYSICAL REVIEWC 90.025803 (2014)
Examination of the role of the ${ }^{14} \mathrm{O}(\alpha, p)^{17} \mathrm{~F}$ reaction rate in type-I x -ray bursts

Experimental study of the ${ }^{34 m} \mathrm{Cl}$ beam production at intermediate energies O.A. Shehu ${ }^{2,3}$, B.P. Crider ${ }^{2 *}$, T. Ginter ${ }^{\text {b }}$, C.R. Hoffman ${ }^{c}$, T.H. Ogunbeku ${ }^{4}$, Y. Xiaa ${ }^{2,5]}$,

Evaluation of fusion-evaporation cross-section calculations B. Blank ${ }^{\text {n, b, }{ }^{2},}$, G. Canchel ${ }^{1}$, F. Seis ${ }^{\text {a, }, 1}$, P. Delahaye ${ }^{\text {c }}$

> PHYSICAL. REVIEW C93, O4s81 (2019)

Coulomb dissociation of ${ }^{2 \gamma} \mathrm{P}$ at $500 \mathrm{MeV} / \mathrm{u}$

Measurements of Fusion Reactions of Low-Intensity Radioactive Carbon Beams on ${ }^{12} \mathrm{C}$ and their Implications for the Understanding of X-Ray Bursts
 Paul, and C Ugalde
Phys. Rev. Lett 112. 192701 - Publisheo 14 May 2014

Gamow-Teller strength distributions of ${ }^{116} \mathrm{Sb}$ and ${ }^{122} \mathrm{Sb}$ using the (${ }^{3} \mathrm{He}, t$) charge-exchange reaction
 F. Diel', H. Ejiri?, D. Frckerst, H. Fujita, Y. Fujita', M. Fujiwara', G. Gey', M. N. Harakeh', K. Hatanaka
 A. Tamif. V. Werner ${ }^{12}$ R. G. T. Zeners ${ }^{12,0,5}$, K Zober

LETTER

An increase in the ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion rate from resonances at astrophysical energies

RESOURCES
 Less than complete set of links / references: crhoffman@anl.gov

https://people.nscl.msu.edu/~zegers/ebss2011/cizewski.pdf (J. Cizewski of Rutgers, NSCL 2011) ...10th in EBSS series
http://www.phy.anl.gov/atlas/EBSS2012/NuclearReactions-Experimentl.pptx (L. Trache of Texas A\&M, ANL 2012) ... 11th http://www.phy.anl.gov/atlas/EBSS2012/NuclearReactions-ExperimentII.pptx
http://fribusers.org/documents/2013/ebssLectures/reactions1.pdf (Grigory Rogachev of FSU, LBNL 2013) ... 12th http://fribusers.org/documents/2013/ebssLectures/reactions2.pdf http://fribusers.org/documents/2013/ebssLectures/reactions3.pdf
http://fribusers.org/documents/2014/ebssLectures/hoffman_1.pdf (Calem Hoffman of Argonne, ORNL 2014) ... 13th http://fribusers.org/documents/2014/ebssLectures/hoffman 2.pdf
http://aruna.physics.fsu.edu/ebss lectures/F Lecture2.pdf (Ben Kay of Argonne, FSU 2015) ... 14th
https://people.nscl.msu.edu/~iwasaki/EBSS2016/reaction_1.pdf (Alan Wuosmaa of UConn, NSCL 2016) ... 15th
https://people.nscl.msu.edu/~iwasaki/EBSS2016/reaction_2.pdf
https://people.nscl.msu.edu/~iwasaki/EBSS2016/reaction_3.pdf
http://www.phy.anl.gov/ebss2017/ebss-2017-zegers.pdf (Remco Zegers of NSCL, ANL 2017) ... 16th

THE END

