

Nuclear Reactions Experiment - I

EBSS 2022

CALEM R. HOFFMAN

Physicist Argonne National Laboratory

OVERVIEW

Lecture 1 Focus: Overview of Nuclear Reactions Lecture 2 Focus: Example using single-particle transfer reactions

- Understanding different types / forms of reactions is key
 - Integrated into measurements, New physics directly, Isotope production
- Reaction Formalism
- Overview of some reaction types
- Example cases of complementary reactions

Lecture 1 Takeaways:

- Familiarity with reaction "language"
- List various reaction types & their general properties
- Link reaction method and/or probe to physics quantities of interest
- How multiple reactions are used to explore common physics goals

ISOTOPE DISCOVERY

Leveraging various reaction types / energies / facilities

REACTION TYPES / ENERGIES / PHYSICS MOTIVATION Many methods with overlapping science goals

0 MeV/u 5	0 MeV/u 100 M	leV/u 20	0 MeV/u	300 MeV/u	400 MeV/u	
Capture	Fission	CI	narge-exch	ange reactions		
One-nucleon transfer		Secondary fragmer	Fast-beam fission			
Pair trans	fer Intermedia energy Co	te- Kn ulex	x Knockout reactions			
Fusion HI-	Barrier-energy Coulex Fusion HI-induced pickup Ine]	Interaction cross section	Quasi-free scat.	
Deep-inela	stic scattering		Coulex (M1 modes and reso			
Astrophysical I reaction rates	-ission properties		Weak int	eraction strength Skins	Fission fragment correlations	
Single-particle de	egree of freedom	Spectroscopy of excited sta	ites			
Pairing Low-lying collectivity		collectivity	Single-p	article properties Skins	Equation of state at high density	
Collectivity an	d shapes		Matter radii, skins			
Heavy elements	Intruder states	Disentangle proton and ne	utron	Higher-lying modes (Pygmy and giant resonances	Single-particle properties and in-medium effects	
Rare isotopes at high spin		contributions to condictivity		Skins	f	

BREAKDOWN IN COULOMB BARRIER REGION

Physics goals may be encompassed by various reaction types

SOME BASIC REACTION FORMALISM / NOTATION Pragmatic way of writing nuclear reactions

The ingredients

- Target (A)
- Projectile (a)
- Beam-like outgoing ion (b)
- Target-like outgoing ion (recoil) (B)

Other Considerations

- Inverse kinematics [rare-isotope beams, MeV/u]
- near-Coulomb energies
- Low energy (<20 MeV/u) to Intermediate energy (50 - few

hundred MeV/u)

For most reactions it is the (a,b) of A(a,b)B that is used to label the reaction

REACTION TYPES

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

TYPES OF NUCLEAR REACTIONS Beam energies range from eV/u to GeV/u

- Direct reactions
 - Knockout single / multi-particle
 - Transfer single / multi-nucleon / charge-exchange
- Scattering
 - Inelastic / Elastic / Resonance
- Fusion
 - Compound Evaporation / Fission
- Capture
 - Neutron / Proton / Alpha / Induced reactions
- Others
 - Heavy-ion collisions / Fragmentation / Deep inelastic collisions / etc...

FUSION REACTIONS Fusion & fusion-fission: ¹²C(^AC,x), Th(¹⁵C,X)

Tools: various cross section codes [HF approach / PACE / CASCADE / HIVAP / etc...]

- <10 MeV/u</p>
- No "memory" of formation
- Size & shape of barrier
- Relevance to stellar processes & heavyelement creation

Extract: Level & decay schemes, angular momenta, transition strengths Deduce: nuclear shapes, entry distributions, deformation parameters Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

- Compound has no "memory" of construction
- Population along yrast line
- Provides alignment
- Prolific tool in gamma-ray spectroscopy

Extract: Level & decay schemes, angular momenta, transition strengths Deduce: nuclear shapes, entry distributions, deformation parameters Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

- Compound has no "memory" of construction
- Population along yrast line
- Provides alignment
- Prolific tool in gamma-ray spectroscopy

Extract: Level & decay schemes, angular momenta, transition strengths Deduce: nuclear shapes, entry distributions, deformation parameters Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

- Compound has no "memory" of construction
- Population along yrast line
- Provides alignment
- Prolific tool in gamma-ray spectroscopy

Extract: Level & decay schemes, angular momenta, transition strengths Deduce: nuclear shapes, entry distributions, deformation parameters Tools: various fusion-evap codes [PACE / CASCADE / HIVAP / etc...]

KEY POINTS

- Compound has no "memory" of construction
- Population along yrast line
- Provides alignment
- Prolific tool in gamma-ray spectroscopy

- CASCADE - HIVAP ···· CNABLA - PACE - GEMINI

SCATTERING REACTIONS Coulomb excitation & Coulomb dissociation

Excitation of ³⁴**Si to** ³⁴**SI*:** Extract: transition strengths Deduce: deformation parameters

Reaction Rates for ²⁶Si(p,γ) from dissociation ²⁷P to ²⁶Si + p: Extract: Survival probabilities, El strengths Deduce: capture rates

- Safe < Coulomb barrier ~3 MeV/u
- Intermediate > Coulomb barrier
- Dissociation > 250 MeV/u
- Electromagnet probe (virtual photon flux)
 - Deformation
 - Capture rates
- Equipped for inverse kinematics

SCATTERING REACTIONS Coulomb excitation & Coulomb dissociation

Excitation of ³⁴**Si to** ³⁴**SI*:** Extract: transition strengths Deduce: deformation parameters

KEY POINTS

- Safe < Coulomb barrier ~3 MeV/u
- Intermediate > Coulomb barrier
- Dissociation > 250 MeV/u
- Electromagnet probe (virtual photon flux)
 - Deformation
 - Capture rates
- Equipped for inverse kinematics

(a)

Reaction Rates for ²⁶Si(p,γ) from dissociation ²⁷P to ²⁶Si + p: Extract: Survival probabilities, El strengths Deduce: capture rates

SCATTERING REACTIONS Elastic & resonance scattering (p,p), (d,d), (α,α)

KEY POINTS

- Few to hundreds MeV/u
- Sensitive to probe: proton, deuteron, alpha, etc.
- Scan in angle and/or energy
- Resonance params on analog states
 - sp structure
 - Widths
- Key in development of optical model description of nuclear potential

Extract: angular distributions, analog states

Deduce: sp states, optical model parameters, resonance/decay widths Tools: R-Matrix, optical model calculations [DWBA, coupled channels, etc...]

KEY POINTS

- Few to hundreds MeV/u
- Sensitive to probe: proton, deuteron, alpha, etc.
- Scan in angle and/or energy
- Resonance params on analog states
 - sp structure
 - Widths
- Key in development of optical model description of nuclear potential

Extract: angular distributions, analog states

Deduce: sp states, optical model parameters, resonance/decay widths Tools: R-Matrix, optical model calculations [DWBA, coupled channels, etc...]

SCATTERING REACTIONS Inelastic scattering: (p,p'), (d,d'), (α,α'), (¹²C,¹²C')

KEY POINTS

- Few to 100's of MeV/ u
- Selective to probe:
 - Proton isovector
 - Deuteron isoscalar
- Resonance structures
- Cluster structures
- Collective features in nuclei

Extract: Distributions, resonance strengths

Deduce: unique excitation modes, clustering prob., isoscalar / isovector modes, deformation length Tools: R-Matrix, optical model calculations [DWBA, CC, etc...]

SCATTERING REACTIONS Inelastic scattering: (p,p'), (d,d'), (α,α'), (¹²C,¹²C')

KEY POINTS

- Few to 100's of MeV/ u
- Selective to probe:
 - Proton isovector
 - Deuteron isoscalar
- Resonance structures
- Cluster structures

 $p^+ = 0$

= 1/2= 1

 α

 $= 3/2 \pi 1/2$

 Collective features in nuclei

HEAVY-ION COLLISIONS ^Sn + ^Sn, ^Ni + ^Ni

KEY POINTS

- >350 MeV/u
- Pion production threshold >280 MeV
- Hot dense matter
 - Stars
- Pion production as a test of the symmetry energy

Extract: pion production, +/- asymmetry Deduce: Symmetry energy, equation of state

HEAVY-ION COLLISIONS ^Sn + ^Sn, ^Ni + ^Ni

KEY POINTS

- >350 MeV/u
- Pion production threshold >280 MeV
- Hot dense matter
 - Stars
- Pion production as a test of the symmetry energy

Extract: pion production, +/- asymmetry Deduce: Symmetry energy, equation of state

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

- ~3 20 MeV/u
- Highly selective
- Direct probe of single-particle aspects
- Surrogate $(p,\gamma) / (n,\gamma)$
- resurgence in the RIB era
- Beam production

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

- ~3 20 MeV/u
- Highly selective
- Direct probe of single-particle aspects
- Surrogate $(p,\gamma) / (n,\gamma)$
- resurgence in the RIB era
- Beam production

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

- ~3 20 MeV/u
- Highly selective
- Direct probe of single-particle aspects
- Surrogate $(p,\gamma) / (n,\gamma)$
- resurgence in the RIB era
- Beam production

KEY POINTS

- ~3 20 MeV/u
- Highly selective
- Direct probe of single-particle aspects
- Surrogate $(p,\gamma) / (n,\gamma)$
- resurgence in the RIB era
- Beam production

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

Extract: final state angular momenta, spectroscopic overlaps, resonance widths Deduce: resonance strengths, reaction rates, pair occupancies, collectivity Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS Multi-nucleon transfer e.g., (p,t), (⁷Li,t), (⁶Li,p)

Extract: final state angular momenta, spectroscopic overlaps, resonance widths Deduce: resonance strengths, reaction rates, pair occupancies, collectivity Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

- ~3 20 MeV/u
- selective
- Alpha-like transfer: (α,γ), (α,X)
- Sensitive to paring (2n)
- Exploratory cluster / rotational states
- resurgence in the RIB era

Extract: final state angular momenta, spectroscopic overlaps, resonance widths Deduce: resonance strengths, reaction rates, pair occupancies, collectivity Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS Charge-exchange: (p,n), (⁷Li,⁷Be)

Extract: angular distributions, isobaric analog states

Deduce: Gamow-Teller strength distributions, level densities, g-strength functions Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

- ~5 400 MeV/u
- Isobaric analog states
- Gamow-Teller distributions
 - Astrophysics
 - Neutrino physics
- Beam production method

DIRECT REACTIONS Charge-exchange: (p,n), (⁷Li,⁷Be)

KEY POINTS

- ~5 400 MeV/u
- Isobaric analog states
- Gamow-Teller distributions
 - Astrophysics
 - Neutrino physics
- Beam production method

Extract: angular distributions, isobaric analog states

Deduce: Gamow-Teller strength distributions, level densities, g-strength functions Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS Charge-exchange: (p,n), (⁷Li,⁷Be)

KEY POINTS

- ~5 400 MeV/u
- Isobaric analog states
- Gamow-Teller distributions
 - Astrophysics
 - Neutrino physics
- Beam production method

Extract: angular distributions, isobaric analog states

Deduce: Gamow-Teller strength distributions, level densities, g-strength functions Tools: Distorted wave Born approximation [DWBA], Coupled Channels, etc...]

DIRECT REACTIONS Quasi-free & nucleon knockout: (p,2p), (9Be, -2p)

Extract: orbital angular momenta, spectroscopic overlaps Deduce: occupancies, single-particle energies, pairing strengths Tools: Eikonal & Glauber model, impulse approximation, Coupled channels calculations, etc...

- >50 MeV/u knockout
- >350 MeV/u quasi-free knockout
- selective to hole states
- Study of overlaps w/ established tools
- Pairing force
- Efficient in the RIB era

DIRECT REACTIONS Quasi-free & nucleon knockout: (p,2p), (9Be, -2p)

Extract: orbital angular momenta, spectroscopic overlaps Deduce: occupancies, single-particle energies, pairing strengths Tools: Eikonal & Glauber model, impulse approximation, Coupled channels calculations, etc...

- >50 MeV/u knockout
- >350 MeV/u quasi-free knockout
- selective to hole states
- Study of overlaps w/ established tools
- Pairing force
- Efficient in the RIB era

KEY POINTS

- >50 MeV/u knockout
- >350 MeV/u quasi-free knockout
- selective to hole states
- Study of overlaps w/ established tools
- Pairing force
- Efficient in the RIB era

Extract: orbital angular momenta, spectroscopic overlaps Deduce: occupancies, single-particle energies, pairing strengths Tools: Eikonal & Glauber model, impulse approximation, Coupled channels calculations, etc...

INTERMEDIATE ENERGY FRAGMENTATION Create & populate isotopes at the extremes >100 MeV/u

DEEP INELASTIC REACTIONS

Production of exotic nuclei via multi-nucleon removal + exchange

CAPTURE REACTIONS

p,n,α cross sections key to proliferation & astrophysics

COMPLEMENTARITY OF NUCLEAR REACTIONS

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ISOMERIC BEAM PRODUCTION

Desire a beam of ³⁴Cl residing in either (or both) isomeric & ground states

 $^{34g,m}Cl(p,\gamma)$ rates influence ^{34}S production in classical novae impacting solar grain classification

A=35 Mirror Pair Partial Level & Decay Schemes

^{34g,m}Cl(d,p) mirror reaction is of interest

^{34m,g}Cl (Z=17, N=17)

Transfer Reactions

- proton adding: (d,n), (³He,d)
- Neutron removal: (d,t), (3He,α)
- Charge exchange: (p,n)
- Multi-nucleon: (d,α) , (α,d) , (α,n)

³⁶Ca ³⁴Ca ⁴⁰Ca ³⁵Ca ³⁷Ca ³⁸Ca ³⁹Ca 33K ³⁴K ³⁵K ³⁶K ³⁷K 38K ³⁹K ³²Ar ³³Ar ³⁵Ar ³⁴Ar ³⁶Ar ³⁷Ar ³⁸Ar ³⁴Cl ³¹Cl ³²CI ³³Cl ³⁶CI 37CI 35CI ³⁰S ³¹S ³²S ³³S ³⁴S ³⁵S ³⁶S ³²P ²⁹P 30p 31 ³³P 34p 350

Transfer Reactions

- proton adding: (d,n), (³He,d)
- Neutron removal: (d,t), (3He,α)
- Charge exchange: (p,n)
- Multi-nucleon: (d,α) , (α,d) , (α,n)

Fragmentation >100 MeV/u

- ³⁶Ar + Be: pn removal
- ⁴⁰Ca + Be: αpn removal

ISOMERIC BEAM PRODUCTION

Sub-set of beam production options

Fusion Evaporation

- ¹⁶O⁽²⁰Ne,pn⁾, ²⁴Mg⁽¹²C,pn⁾, ²⁷Al⁽¹²C,αn⁾

8

ISOMERIC BEAM PRODUCTION

Sub-set of beam production options

Fusion Evaporation

- ¹⁶O⁽²⁰Ne,pn), ²⁴Mg⁽¹²C,pn), ²⁷Al⁽¹²C,αn)</sup>

Other Possible Reactions:

- Resonance scattering ³³S(p,γ)
- Electron capture
- Spallation

KEY ASTROPHYSICS REACTIONS RATES Requires knowledge of resonance energies, spins, widths (overlaps), ...

thermonuclear reaction rate:

 $\mathbf{J}^{\pi}, \, \Gamma_{i}, \, \Gamma_{tot}$

C

x + A

 $Q = S_{\perp}$

KEY ASTROPHYSICS REACTIONS RATES Requires knowledge of resonance energies, spins, widths (overlaps), ...

thermonuclear reaction rate:

¹⁴O(A,P)¹⁷F REACTION RATE hot-CNO breakout in type-I x-ray bursts

EXAMINATION OF THE ROLE OF THE ${}^{14}O(\alpha, \ldots)$

PHYSICAL REVIEW C 90, 025803 (2014)

TABLE II. Resonance parameters adopted in the calculation of the ${}^{14}O(\alpha, p){}^{17}F$ reaction rate.

E_x (MeV) ⁿ	$E_{\rm res}~({\rm MeV})^n$	J^{π}	Γ_{α} (eV)	Γ_p (keV)	$\Gamma_{p'}$ (keV)	Γ (keV)	ωy (MeV)
5.153 ± 0.01	0.039	3-	4.3×10^{-52a}	1.7 ^a	_	≤15 ^a	3.0×10^{-57}
6.150 ± 0.01	1.036	1-	3.9 ± 1.0^{b}	$37.8 \pm 1.9^{\circ}$	$15.9 \pm 0.7^{\circ}$	$53.7 \pm 2.0^{\circ}$	1.2×10^{-5}
6.286 ± 0.01	1.172	3-	0.34*	20 ± 15^{d}		20 ± 15^{d}	2.4×10^{-6}
7.05 ± 0.03	1.936	4+	$22.6 \pm 3.2^{\circ}$	90 ± 40^{f}		$90 \pm 40^{\circ}$	2.0×10^{-4}
7.35 ± 0.02	2.236	2+	40 ± 30^{6}	70 ± 60^{f}		$70 \pm 60^{\circ}$	2.0×10^{-4}
7.62 ± 0.02	2.506	1-	1000 ± 120^{r}	72 ± 20^{4}	$<2^{r}$	75 ± 20^{4}	3.0×10^{-3}
7.94 ± 0.01	2.826	3-	$(11 \pm 6.6) \times 10^{3g}$	35 ± 15^{e}	9.0 ± 5.6^{g}	$55 \pm 20^{\text{g}}$	6.2×10^{-2}

¹⁴O(A,P)¹⁷F REACTION RATE hot-CNO breakout in type-I x-ray bursts

Exploring the mirror states in ¹⁸O

- ¹⁷O(d,p): neutron transfer
 - C²S values of mirror state, E, π
- ¹⁶O(t,p): 2n transfer
 - E, π of mirror levels
- ¹⁴C(⁶Li,d): alpha transfer
 - Alpha width of mirror state

= 9
9(3)
eV
(8)
1.2)

		¹³⁶ Xe(p	, p 6) ¹³⁶ X	e	
	$rac{E_{R}^{\mathrm{c.m.}}}{(\mathrm{MeV})}$	$E_{R}^{c.m.}$ 10.195	ı	j	Spp
	10.195	0.00	3	7	0.73
	10.794	0.60	1	4	0.40
	11.173	0,98	1	ł	0.27
	11.421	1.23	5	<u>9</u>	
	11.498	1.30	3	52	0.26
	11.724	1.53	3		0.15
(keV)	l (ħ)	J^{π}	$\sigma(\theta)$	(mb/sr)	C^2S

E (keV)	l (ħ)	J^{π}	$\sigma(\theta)$ (mb/sr)	C^2S
0.0 ^a	3	7/2-	18.8 (15°)	0.94
601ª	1	3/2-	10.6 (12°)	0.52
986ª	1	$1/2^{-}, 3/2^{-}$	2.2 (17°)	0.35
1218ª	5	$9/2^{-}$	1.1 (33°)	0.43
1303ª	3	$5/2^{-}$	4.4 (15°)	0.22
1534 ^a	3	$5/2^{-},7/2^{-}$	2.2 (20°)	0.12

CONCLUDING REMAKES ON LECTURE I

- Understanding different types / forms of reactions is key
 - Integrated into measurements, New physics directly, Isotope production
- Reaction Formalism
- Overview of some reaction types
- Example cases of complementary reactions

Lecture 1 Takeaways:

- Familiarity with reaction "language"
- List various reaction types & their general properties
- Link reaction method and/or probe to physics quantities of interest
- How multiple reactions are used to explore common physics goals

RESOURCES

Less than complete set of links / references: <u>crhoffman@anl.gov</u>

Review

Low energy nuclear physics with active targets and time projection chambers

D. Bazin ^{a,b,*}, T. Ahn ^c, Y. Ayyad ^a, S. Beceiro-Novo ^b, A.O. Macchiavelli ^d, W. Mittig ^{a,b}, J.S. Randhawa ^a

PHYSICAL REVIEW C 90, 025803 (2014)

Examination of the role of the ${}^{14}O(\alpha, p){}^{17}F$ reaction rate in type-I x-ray bursts

J. Hu, ¹⁵ J. J. He, ¹⁷ A. Parikh, ¹⁴¹ S. W. Xu, ¹⁵ H. Yamaguchi,² D. Kahl,¹ P. Ma, ¹ J. Su,⁶ H. W. Wang,² T. Nakao,² Y. Wakabayashi,⁴ T. Teranishi,⁹ K. I. Hahn,⁶ J. Y. Moon,¹⁰ H. S. Jung,¹¹ T. Hashimoto,¹² A. A. Chen,¹¹ D. Irvine,¹ C. S. Lee,¹¹ and S. Kabomo^{1,4}

Transfer reactions as a tool in Nuclear Astrophysics

Faïrouz Hammache^{1,*} and Nicolas de Séréville^{1,*}

Single-nucleon knockout reactions at fragmentation beam energies

J. A. Tostevin^{*}

Department of Physics, School of Physics and Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Sub-Coulomb α Transfers on ¹²C and the ¹²C $(\alpha, \gamma)^{16}$ O S Factor

C. R. Brune, ¹ W. H. Geist, ^{1,*} R. W. Kavanagh,² and K. D. Veal^{1,*} ¹University of North Carolina, Chapel Hill, North Carolina 27599-3255 and Triangle Universities Nuclear Laboratory, Darham, North Carolina 27708-0308 ²W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (Received 17 June 1990)

Experimental study of the ^{34m}Cl beam production at intermediate energies

O.A. Shehu ^{4,1}, B.P. Crider ^{4,*}, T. Ginter⁶, C.R. Hoffman ⁶, T.H. Ogunbeku⁴, Y. Xiao ^{4,5}, K.L. Childers ^{1,6}, P. Chowdhury ⁶, C. Fry ^{1,5,2}, R. Lamere⁵, R. Lewis^{6,4}, S.N. Liddick ^{1,6,4}, B. Longfellow ^{1,6,4}, S. Lyons ^{1,4,4}, S.K. Neupane⁴, D. Pércz-Loureiro ^{1,5,4}, C.J. Prokop⁵, A.L. Richard ^{1,5,4}, U. Silwal ^{1,6,4}, D.P. Siwakot ^{1,5,7}, D.C. Smith ⁴, M.K. Smith ⁵

Evaluation of fusion-evaporation cross-section calculations

B. Blank^{a,b,*}, G. Canchel^a, F. Seis^{a,1}, P. Delahaye^c

⁶ Gentre d'Etudios Nucléaires de Bordeuxe Gradignan, 19 Chemin de Solerium, CS10120, F-33175 Gradignan Codex, France ^b ISOBEC/ERRA, IP Department, CH-211 Geneve 23, Sutterviend ^c Cannel Acolétanes National d'Auxa Learde, Bå Hemr Recytared, IP 55027, 14076 CAEN Cedex 05, France

PHYSICAL REVIEW LETTERS 122, 162503 (2019)

Prominence of Pairing in Inclusive (p,2p) and (p,pn) Cross Sections from Neutron-Rich Nuclei

N. Paul,^{1,2,*} A. Obertelli,^{33,2} C. A. Bertulani,⁴ A. Corsi,¹ P. Doomenbal,² J. L. Rodriguez-Sanchez,^{1,3} G. Authelet,¹

H. Weick,² and M. Wiescher²⁹ (R3B Callaboration) Measurements of Fusion Reactions of Low-Intensity Radioactive Carbon Beams on ¹²C and their Implications for the Understanding

of X-Ray Bursts

PHYSICAL REVIEW C 93, 045811 (2016)

Coulomb dissociation of 27 P at 500 MeV/u

J. Marganice, 12.3.* S. Becciro Novo, 5.5 S. Typel, 2 C. Langer, 3.6.7 C. Wimmer, 7 H. Alvarez-Pol, 4 T. Aumann, 12 K. Boretzky, 3

E. Casarejos,43 A. Chatillon,2 D. Corina-Gil,4 U. Datta-Pramanik,9 Z. Elekes,39 Z. Fulop,59 D. Galaviz,11 H. Geissel,2

T. Le Bleis,^{2,15} Yu. A. Litvinov,² K. Mahata,³ C. Muentz,⁷ C. Nociforo,² W. Ott,² S. Paschalis,^{1,16} R. Plag,² W. Prokopewicz,²

C. Rodriguez Tajes,⁴ D. M. Rossi,^{53,17} H. Simon,¹ M. Stanoju,² J. Stroth,⁷ K. Sümmerer,² A. Wagner,¹⁸ F. Wamers,^{3,7}

S. Giron,² U. Greife,¹² F. Hammache,¹⁸ M. Heil,² I. Hoffman,² H. Johansson,¹⁴ O. Kiselev,² N. Kurz,² K. Larsson,¹⁵

P. F. Camrelli, S. Almarar-Carideron, K. E. Rehm, M. Albers, M. Alcotta, P. F. Bertone, B. Digiovine, H. Esbersen, J. O. Fernández, Wiella, D. Henderson, C. L. Jiang, J. Jui, S. T. Marley, O. Nusair, T. Paichan-Hazan, R. C. Perdo, M. Paul, and C. Ugalde Phys. Rev. Lett. **12**, 192701 – published: 14 May 2014

Gamow–Teller strength distributions of 116 Sb and 122 Sb using the (³He, t) charge-exchange reaction

C. A. Douma^{1a}, C. Agodi², H. Akimune¹, M. Alanssari⁴, F. Cuppuzzello^{2,1}, D. Carbone¹, M. Cavallare², G. Colè^{1,2}, F. Dief¹, H. Ejin², D. Frekers⁴, H. Fujita^{*}, Y. Fujita^{*}, M. Fujiwara³, G. Gey², M. N. Harakeh¹, K. Hatanaka⁹, F. Hattori⁴, K. Hegurl¹, M. Holl⁴, A. Inoue⁴, N. Kalantar-Nayestanakl¹, Y. F. Niu^{10,11}, P. Puppe⁴, P. C. Ries¹¹, A. Tamil⁶, Y. Werner¹⁻¹, R. G. T. Zegers^{1,21,15}, K. Zuber¹⁶

LETTER

Mige://doi.org/10.0008/s41186-018-0249-4

An increase in the ${}^{12}C + {}^{12}C$ fusion rate from resonances at astrophysical energies

A. Tumino^{1,5}, C. Spitulier^{1,2}, M. La Cognuta², S. Chernbin^{1,2}, G. L. Gaunto^{1,4}, M. Goltmi^{1,2}, S. Hayakawa^{1,2}, I. Indultumo², I. Lamita^{1,4}, H. Bernaue², B. G. Pazzna², S. M. R. Pagla^{1,4}, G. G. Balanda^{1,4}, S. Bornato^{1,4}, M. L. Sengi¹, R. Sparta¹, K. Tumba⁴

RESOURCES Less than complete set of links / references: <u>crhoffman@anl.gov</u>

https://people.nscl.msu.edu/~zegers/ebss2011/cizewski.pdf (J. Cizewski of Rutgers, NSCL 2011) ...10th in EBSS series

http://www.phy.anl.gov/atlas/EBSS2012/NuclearReactions-ExperimentI.pptx (L. Trache of Texas A&M, ANL 2012) ... 11th http://www.phy.anl.gov/atlas/EBSS2012/NuclearReactions-ExperimentII.pptx

http://fribusers.org/documents/2013/ebssLectures/reactions1.pdf (Grigory Rogachev of FSU, LBNL 2013) ... 12th http://fribusers.org/documents/2013/ebssLectures/reactions2.pdf http://fribusers.org/documents/2013/ebssLectures/reactions3.pdf

http://fribusers.org/documents/2014/ebssLectures/hoffman_1.pdf (Calem Hoffman of Argonne, ORNL 2014) ... 13th http://fribusers.org/documents/2014/ebssLectures/hoffman_2.pdf

http://aruna.physics.fsu.edu/ebss_lectures/F_Lecture2.pdf (Ben Kay of Argonne, FSU 2015) ... 14th

https://people.nscl.msu.edu/~iwasaki/EBSS2016/reaction_1.pdf (Alan Wuosmaa of UConn, NSCL 2016) ... 15th https://people.nscl.msu.edu/~iwasaki/EBSS2016/reaction_2.pdf https://people.nscl.msu.edu/~iwasaki/EBSS2016/reaction_3.pdf

http://www.phy.anl.gov/ebss2017/ebss-2017-zegers.pdf (Remco Zegers of NSCL, ANL 2017) ... 16th

THE END

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

