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 Stellar burning and stellar evolution [3-9]



Stellar fusion

The Sun was first a cloud of gas that underwent gravitational
collapse, causing the core to become hot and dense enough*
for fusion to begin

*have to overcome the Coulomb barrier (proton repulsion)

The energy released by fusion provides an outward pressure,
combating the gravitational inward pull

2H+3H > *He+n, Q=17.6 MeV

Energy released by fusion ~10-30 MeV



Stellar burning



Stellar burning

Why an iron core?



Neutron stars:

* Mostly neutrons, held up by
neutron degeneracy pressure

* One teaspoon contains the
mass of ~700 Great Pyramids

e ~10 mile diameter

C-0 and O-Ne White dwarfs:

* Progenitor not able to
proceed to fusion of heavier
species, held up by electron
degeneracy pressure

e ~200,000 times as dense as
Earth with about same radius

Red dwarf:

* Most common in Solar
neighborhood

* Burn H but can’t reach He
burning

Brown dwarf: Not able to burn H



Hertzsprung-Russell (HR) Diagrams



Hertzsprung-Russell (HR) Diagrams



Hertzsprung-Russell (HR) Diagrams
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Stars in globular cluster M 3: these all formed around the
same time and some have moved on to later stages, most
still in hydrogen burning phase on main sequence



* Supernovae: types and nucleosynthesis [11-16]






Thermonuclear Supernovae (Type |a)

Double degenerate model

Single-degenerate model

* Single-degenerate model:

C-O white dwarf accretes H- or He-rich matter
from a companion (main sequence star, red
giant, or helium star); mass of white dwarf
increases until approaches Chandrasekhar limit
(1.4 M), triggering explosion

Explains similar peak luminosity and early
spectra for SN-la since 1.4 M, implies natural
limit on >°Ni

main problem is must accrete 0.3 M, to explode
since max white dwarf mass is 1.1 M,

* Double-degenerate model:

Two C-O white dwarfs merge due to gravitational
wave radiation, triggering explosion

Does not easily explain similar peak luminosity of
SN-la due to wide range of °®Ni production



Core-collapse SN and neutrino-driven winds

The proto-neutron star cools through neutrino
emission (99% star’s binding energy released as v)
Cooling via Urca processes (lepton + baryon —
baryon + v) aswellasete™ — v;7, wherel = e, i, T



Core-collapse SN and neutrino-driven winds

Neutrinos set the

neutron to proton ratio

n

Y, =—"—
ny, +ny

via weak interactions

Vet+tn—-op+e
Vo+p—-on+e’

and the influence of
these reactions
depends on the
neutrino luminosities
and average energies

The proto-neutron star cools through neutrino Woosley&Janka 06; see
emission (99% star’s binding energy released as v) also Panov&Janka 08
Cooling via Urca processes (lepton + baryon —

baryon + v) aswellasete™ — v;7, wherel = e, i, T



Supernovae and heavy elements?
Light heavy elements and (a,n) in core-collapse SN

Conditions which synthesize A>130 are not found by most
modern core-collapse SNe simulations
(e.g. Arcones+07, Wanajo+09, Fischer+10, Hidepohl+10)

In such events other processes such as (a,n) and vp process
could reach up to A~100
(e.g. Pruet+06, Frohlich+06, Bliss+18)

Recent simulations (below) find some cases develop neutrino
driven winds but not a standard feature for successful explosions

All exploding
15 M models

Witt+21;
see also
Bliss+18



Supernovae and heavy elements?
Light heavy elements and (a,n) in core-collapse SN

Conditions which synthesize A>130 are not found by most
modern core-collapse SNe simulations
(e.g. Arcones+07, Wanajo+09, Fischer+10, Hidepohl+10)

In such events other processes such as (a,n) and vp process
could reach up to A~100
(e.g. Pruet+06, Frohlich+06, Bliss+18)

Recent simulations (below) find some cases develop neutrino
driven winds but not a standard feature for successful explosions

All exploding
15 M models

Witt+21;

see also “SWASI” analog of the SASI (Standing Accretion

Bliss+18 Shock Instability) in CCSNe — non-radial
perturbations amplify leading to convective motion
which impacts how the shock can move out



* Making the heaviest elements: neutron capture nucleosynthesis [18-26]



LOGARITHM OF RELATIVE ABUNDANCE (Si=I106)

Neutron capture processes to make the heaviest elements

Solar heavy elements
H = r-process (rapid neutron capture)
e  +s-process (slow neutron capture) +?
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LOGARITHM OF RELATIVE ABUNDANCE (Si=I0°)

Neutron capture processes to make the heaviest elements

Solar heavy elements
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LOGARITHM OF RELATIVE ABUNDANCE (Si=I106)

Neutron capture processes to make the heaviest elements

Solar heavy elements
H = r-process (rapid neutron capture)
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Slow neutron capture (s-process) pathway

Courtesy of Maria Lugaro

s-process number density of
neutrons ~108 cm3 (compare to
~1024 cm-3 for the r process)

Capture is “slow” relative to -
decay; implies a path close to
stable species

Note how the different paths
imply some isotopes to be s-only
or r-only

s-process “seeds” are heavy
nuclei such as >°Fe
(star enriched by past events)



Slow neutron capture (s-process) in AGB stars

Where do the neutrons come from?
12C(p,y)*3N

BN - BC+e* +v,

136(6(’160

Courtesy of Maria Lugaro



How do we know there is an r—prOCESS? “Curious Marie” sample of Allende meteorite
Actinides (2_89_ 103) shows excess U-235 which is a trace of Cm-247

The s-process terminates at Pb-208 (Z=82) but we observe actinides
in meteorites, Earth ocean crusts, our Sun, and other stars
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r-process species must be from a rare source

108

= .

2 . - Pu fluxmeasured Pu-244 in deep-sea ocean
<\c‘rs Pu flux upper limit (20)

£ 244py flux ISM-model crusts compared to a model
2 s which assumes a source as
€

g frequent as supernova

E 104 Wallner+15

§ This work

©

=

2]

g

Crust

Sediment

Most recent

measurements are still

consistent with a rare

extraterrestrial source

for Pu-244 (long lived nuclear weapons
compared to Pu-239)

Wallner+21

Ji+16

Ultra faint dwarf galaxies (formed
shortly after first stars) rarely show an
enhancement in r-process elements
like in Reticulum I



Some candidate sites for r-process element production

Collapsar disk Magneto-rotationally Primordial black hole +
winds driven (MHD) supernovae neutron star

Credit: APS/Alan Stonebraker, via Physics

Siegel+18; see also Winteler+12; see also Mosta+17 Fuller+17
McLaughlin&Surman 05,

Miller+19



Spotlight on MHD supernovae

Whether MHDs undergo only a “weak” r process reaching the second peak rather
than a “main” or “strong” r process reaching the third peak or beyond depends
on the influence of neutrinos and the magnetic field strength
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Just like in CCSNe, neutrino energies and luminosities Simulations with higher magnetic field strength (ex 350C-
are crucial to determine the r-process reach Rs — 1012 G) undergo a stronger r process than those

with lower magnetic field strength



* Neutron star mergers: gravitational waves, kilonovae, and nucleosynthesis [28-46]



Neutron star mergers and the r process: a bit of history

Neutron-rich ejecta from neutron stars
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NSM dynamical ejecta

Effect of neutrinos Equation of state

Bovard+17

Rosswog+13

See also Wanajo+14,
Vincent+19, Foucart+20....

Radice+19; see also Perego+19



Post-merger disk ejecta Neutrino driven vs Equation of state

N

Just+16

Owen&Blondin 05
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GW170817 & AT2017gfo: photon opacity

Opacity sources include (*most important in NSM ejecta):

bound-bound transitions™ — photoelectric absorption: photon
absorbed or emitted as an electron moves between levels

bound-free — photoionization: electron absorbs photon and escapes

free-free scattering — bremsstrahlung: free electron passing close to
ion or nucleus can emit or absorb a photon

electron scattering — inelastic (Compton) scattering and elastic
(Rayleigh) scattering: photons scatter off electrons
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B Ndll (f-shell)
El Fell (d-shell)

2001 = Snll (p-shell) ||
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Kasen+13;
see also

Fontes+20,
Tanaka+20



Model

Lanthanides

Arnould+07

Kasen+17

GW170817 & AT2017gfo:
“red” and “blue” kilonovae

Spectra and light curves depend on the species present;
Lanthanide and/or actinide mass fraction %, opacity 1,
longer duration light curve shifted toward infrared

(e.g. Metzger+10, Lippuner+15, Barnes+16,21, Wanajo+18,
Watson+19, Hotokezaka+20, Korobkin+20, Zhu+18,21, Wang+20)



Model

Lanthanides

Arnould+07

Kasen+17

GW170817 & AT2017gfo:
“red” and “blue” kilonovae

Spectra and light curves depend on the species present;
Lanthanide and/or actinide mass fraction %, opacity 1,
longer duration light curve shifted toward infrared

(e.g. Metzger+10, Lippuner+15, Barnes+16,21, Wanajo+18,
Watson+19, Hotokezaka+20, Korobkin+20, Zhu+18,21, Wang+20)

Observation
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Days Villar+17; see also
Cowperthwaite+17



Are actinides produced in NSMs?

254Cf

N

Arcones+17

— i-process + more...
W. W. Girdner/Caltech Archives



Are actinides produced in NSMs?

254Cf

N

JWST
sensitivity

Arcones+17

— i-process + more...
Zhu+18; see also Wu+19



Do binary NSMs make enough
heavy elements?

| LIGO/Virgo (GW170817)

Galactic
Chemical

Evolution ﬂ

v1+Wwied

Coté+18



Barnes 20 Light Curves
Take estimates for
GW170817 mass
ejection range from

literature \

Galactic
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Barnes 20 Light Curves
Take estimates for
GW170817 mass
ejection range from

literature \

Galactic
Chemical
Evolution

vT+Wwied
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Do binary NSMs make enough
heavy elements?
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Updated LIGO/Virgo, Abbott+21

Nucleosynthesis Predictions
Abundance range of
dynamical ejecta from
10 mass models

Cotée+18

*Now another confirmed NSNS
merger GW190425 as well as a June
2021 confirmation of two NSBH
mergers GW200105 and 200115!



Impact of nuclear physics uncertainties: r-process N=126 peak example
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* Little to no experimental data on the neutron-rich side at N=126; nuclear mass models predict
different shell closure strengths and thus different amounts of elements like gold and platinum

20 1

« The N=126 shell closure is the “gateway” to the actinides and thus affects how strongly
elements like uranium-238 are produced



Sensitivity of r-process abundances to neutron capture and [-decay

—— Moller et al. 4
Y —— Marketin et al. 3

|

1073 E
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Nikas+20 Vassh+19
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hot wind hot wind

™ FRIB w/ intensity
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Mumpower+15



Spotlight on impact of nuclear masses

Masses determine key quantities that go into
calculating capture and decay rates; for instance:

Neutron capture rates depend on

Sn(Z,A+1) =Mz + My — Mz 444

B~-decay rates depend on

Q,B_ = (Mparent - deaughter)c2

Eu (Z=63)

Mumpower+15



SpOt| Ight on im oFe ct Of N UC|ea F Masses MCMC predictions for neutron-rich rare-earth masses

Masses determine key quantities that go into
calculating capture and decay rates; for instance:

Neutron capture rates depend on

Sn(Z,A+1) =Mz + My — Mz 444

B~-decay rates depend on

Q,B‘ - (Mparent — deaughter)c2

Movie by
N. Vassh
Black —solar abundance data Red —values at current step
Mumpower+15 Grey —AME 2012 data Blue — best step of entire run

Eu (Z=63)



Spotlight on impact of nuclear masses

Masses determine key quantities that go into
calculating capture and decay rates; for instance:

Neutron capture rates depend on

Sn(Z,A+1) =Mz + My — Mz 444

B~-decay rates depend on

Q,B‘ = (Mparent — deaughter)c2

M — Mps [MeV]

Eu (Z=63)

Mumpower+15

MCMC results in
moderately neutron-rich outflows
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Neutron star merger accretion disk winds with:
Hot = extended (n,y)S(y,n) equilibrium
Cold = photodissociation falls out early

Vassh+21 (ApJ 907, 98)



N=126

. . . ANL Trap: Mass
Worldwide experimental campaigns to s

measure the properties of neutron-
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Future experiment meets the r-process path

*reach of future
experiment in key
regions impacting
the evolution of
abundances
(note moderately
n-rich conditions
used here)

Movie by
N. Vassh



e Galactic chemical evolution [49-51]



Palm+14



[Ew/Fe)

Supernovae as the r-process source?
Galactic chemical evolution (GCE) and low metallicity stars
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Supernovae as the r-process source?
Galactic chemical evolution (GCE) and low metallicity stars
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*The stars in the box seem to be more
consistent with supernovae since
neutron stars take time to merge

Neutron Star Mergers only

Shen+15

Hydrodynamic mixing accounting for inhomogeneities
in the interstellar medium could explain how r-process
elements find their way to low metallicity regions



Could NSMs be the only r-process source?
Consider [Eu/Fe] again but now stars in
the Galactic disk

Eu production rate must reach equilibrium before onset
of SNela in order to reproduce [Eu/Fe] of disk stars

NSM with delay times ~t! don’t reproduce this behavior:

earlier sources? Coté,Eichler+18



