"All the matter that makes up all the bring organisms and ecosystems, planets and stars, throughout every galaxy in the universe, is made of atoms, and 99.9% of the mass of all the atoms in the (visible) universe comes from the nuclei at their centers which are over 10,000 times smaller in diameter than the atoms themselves"

National Science Academies Decadal report on Nuclear Physics

Nuclear Structure Experiment I

Ani Aprahamian University of Notre Dame &

A. Alikhanyan National Science Laboratory of Armenia

Nuclear Shapes

 $\mathsf{R}(\theta, \phi) = \mathsf{R}_0(1 + \beta \mathsf{Y}_{\lambda\mu}(\theta, \phi))$

 λ =2; β = 0 spherical; β < 0 oblate (disk-like); β > 0 prolate (football-like) λ =3; triaxial, octupole deformed

The 3D Nuclide Chart Mass Excess

First Observation of a Near-Harmonic Vibrational Nucleus

A. Aprahamian

Clark University, Worcester, Massachusetts 01610, and Lawrence Livermore National Laboratory, Livermore, California 94550

D. S. Brenner

Clark University, Worcester, Massachusetts 01610

and

R. F. Casten, R. L. Gill, and A. Piotrowski^(a) Brookhaven National Laboratory, Upton, New York 11973 (Received 4 May 1987)

2

2

Shape Coexistence: Near closed shells

O, Ca, Ni, Zr, Mo Cd, Sn Hg,Pb

Institute for Structure And Nuclear Astrophysics

Nuclear Structure Plan

&

Nuclear Vibrations

Figure 5.13 The first vibration modes of the nuclear surface, showing the form of the nucleus for each mode (solid line) in comparison to the original spherical nucleus. The dotted line represents the original "fixed volume" sphere.

Experiment 🔮 Kintation 1000 Theory leformed Nucleus

J(J+1)

Evolution of Nuclear Structure

Quadrupole oscillations of a deformed nucleus: β and γ

What can we expect to see? Transition Probabilities

Pairing	gaps:	Nuclear Masses	
	2∆n	2∆p	E _{K=0+}
¹⁵⁴ Gd	2468 keV	2234 keV	680 ke\
¹⁵⁶ Gd	1996	1914	1168
¹⁵⁸ Gd	1768	1738	1196
¹⁶² Dy	1720	1914	1400
¹⁶⁴ Dy	1692	1792	1656
¹⁶⁶ Er	1824	1814	1460
¹⁶⁸ Er	1540	1787	1217
¹⁷⁸ Hf	1360	1660	1199

FIG. 1. Systematics of the first excited $K^{\pi} = 2^+ "\gamma"$ and $K^{\pi} = 0^+$ bands in several isotopes of Sm, Gd, Dy, Er, Yb, and Hf as a function of neutron number "N" along with the observed $B(E2; 2^+_{K=2^+} \rightarrow 0^+)$ values for the γ bands and the $B(E2; 0^+_2 \rightarrow 2^+_{g.s.})$ values for the first excited $K^{\pi} = 0^+$ bands.

Quasi-particle excitations Pairing vibrations Collective excitations

GRID Measurements: $E_{1772}/E_{1199} = 1.5$

Aprahamian, Phys. Rev. C65, 031301R (2002)

Gamma-ray Spectroscopy Dynamic moments of Inertia

Aprahamian, Phys.Rev. C65, 031301R (2002)

Observables for nuclear structure studies:

Energy Levels from gamma-ray spectroscopy: Level energy ratios

Masses of Nuclei from traps: proton and neutron separation energies

Reaction cross sections by spectrometers

Lifetimes of excited states: Transition Rates

The Gamma-Ray Energy Tracking Array: GRETA

GRETA is a 4π tracking detector capable of reconstructing the energy and threedimensional position of γ -ray interactions

- Unprecedented combination of
- full solid angle coverage and high efficiency
- excellent energy and position resolution
- good background rejection (peak-to-total)

A **key detector** for the Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University to study exotic nuclei with

extreme proton or neutron excess

· Builds on the success of GRETINA

Lifetime Techniques

adapted from Klaus-Peter Lieb, "The Measurement of Nuclear Lifetimes" **Experimental Techniques in Nuclear Physics** ed. D. N. Poenaru, W. Greiner. 1997

DSAM: Inelastic neutron scattering $(n,n'\gamma)$

fs to ps range of lifetimes Stable target/beam combinations

$$E_{\gamma}(\theta_{\gamma}) = E_0[1 + F_{\exp}(\tau)\frac{v_{\rm cm}}{c}\cos\theta_{\gamma}]$$

 $F_{exp}(\tau)$ Is the experimental attenuation factor determined from the measured Doppler shift and compared to calculated Ones to determine the lifetime of the state.

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

 $\widehat{}$

GRID: Sub-picosecond lifetime measurements by gamma ray induced Doppler broadening

Thermal neutron capture.....excited by the neutron binding energy (~ 8-10 MeV) Thermal neutron energies ~25 meV not significant

Excited nucleus de-excites by emission of gamma-rays

GAMS 4 Spectrometer @ILL Gamma Ray Induced Doppler Broadening

Lifetime Techniques

IGISOL – Current Layout

50 (x100)

35 (x10)

19999999999999

20

A=109

IGISOL – Current Layout

Advanced Time Delay Technique

Advanced Time Delay Technique

Developed by Henryk Mach

Slope Fitting Method

$$F(t_j) = \gamma \int_A^{+\infty} e^{-\delta(t_j-t)^2} e^{-\lambda(t-A)} dt$$

Centroid Shift Method

- In some cases, the level lifetime is too short to leave a measurable slope in the TAC spectrum
- 2 methods to get lifetime from relative comparisons
- Sequential Transitions

Advanced Time Delay Technique

Developed by Henryk Mach

Slope Fitting Method

$$F(t_j) = \gamma \int_A^{+\infty} e^{-\delta(t_j-t)^2} e^{-\lambda(t-A)} dt$$

$\beta - \gamma - \gamma$ Triple Coincidences

- $\beta \gamma \gamma$ Required
- Timing = β -LaBr₃-Ge
- Trigger window open for 500ns in HPGe detectors, 50ns in LaBr₃(Ce)

- <u>Energy calibration</u>:
 For both HPGe & LaBr₃
 detectors using well known peaks in ¹⁰⁹Rh
- <u>Timing calibration (walk</u> curve): Time signal is energy dependent
 - NE111A calibrated with known β-γ-γ cascade
 - LaBr₃(Ce) calibrated using A=138 (¹³⁸Ba)

Example: $\beta - \gamma - \gamma$ Coincidences for ¹⁰⁹Tc

Slope Fitting Method

¹⁰⁹Ru Low Energy Decay Scheme

Blue = new results from this work

¹⁰⁹Ru High Energy Decay Scheme

Blue = new results from this work

Lifetime measurements of exotic nuclei

....last piece of the puzzle.....stay tuned!

• flreBalll consists of 6 Mini-Orange Spectrometers for detecting conversion electrons

Conversion Electrons in ¹⁵⁴Gd and ¹⁵⁶Gd

Thank you for your attention! aapraham@nd.edu

WNNNNNN

flreBall: Search for EO Transitions

Clovershare was paired with ICEBall (Internal Conversion Electron Ball)

- ICEBall consists of 6 Mini-Orange Spectrometers for detecting conversion electrons
- ¹⁵²Sm(α,2n) reaction was used
- ¹⁵⁴Gd has 16 known 0⁺ states. 10 of these were only found in 2006 by Meyer et al.
- The nature of excited 0⁺ states is not well understood, E0 transitions are critical for understanding.

Plots show γ -spectrum with corresponding SiLi spectrum beneath, shifted for the K-electrons to align with the corresponding γ -lines

