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Production of Medical Isotopes

Outline
* Applied vs. Basic Nuclear Science
* Radioisotopes and Nuclear Medicine

— Accelerator-based
— Reactor-based

* Current Radioisotopes

e Where the Future Lies...



Basic vs. Applied Science




What is Nuclear Medicine?

The use of radioisotopes or nuclear technology to
image or to treat disease...

Icon

HO: i "/\I)L

Thyroxme

40 million nuclear medicine procedures are

performed each year (50% in US)... ]:[ - Tl STI
Growing at 5 — 10% per year....



What is Nuclear Medicine?

* Imaging/diagnostic radioisotopes
 Therapeutic radioisotopes
* Theranostic radioisotopes

Positron Emission Tomography (PET) 11C, 13F
Single Photon Emission
Computerized Tomography (SPECT) ?9"Tc, ¢’Ga

Brachytherapy 60Co, 125
Radiopharmaceuticals  131] 90y



What Makes a Good Radioisotope?

Radioisotopes have the same chemical
properties and will behave similarly as non-
radioactive isotopes — can be used as tracers...
Appropriate half-life: not too short, not too long
(both physical and biological half-life)

Type of decay is important...

Availability...

Purity....



How to make Radioisotopes?
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Accelerator Methods of Production

Usually light-ion accelerators: protons (most

common), ?H, 3He, 4

He

Typically acceleratec

(electostatic accelerators &|cyclotrons

by electric fields

Energy range of 10 — 25 MeV protons will
result in spallation reactions = lots of isotopes

Need targetry (gas, |

Need radiochemical

iquid and solid targets)
separation & purification



Cyclotron Production of Medical Isotopes

* Over 1500 cyclotrons world-wide dedicated to
medical radioisotope production...(244 in US)
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Why Cyclotrons?

* Cyclic or repetitive application of force...
allows small force to be used many times

 Small device s e

Alternating electric field
accelerates charged
particle at each gap crossing
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GE PETtrace
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UAB TR24
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Which Nuclear Reactions?

* Governed by charged particle excitation functions
* Low energies = low & usually

* o usually increases to a maxima and then
decreases due to competing reaction channels

e Usually much lower o
than for neutron reactions
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Figure 4.4. Excitation functions for several common proton-induced reactions on the
ame low-Z ta nuclide.
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Production of Radioactive Nuclei

e Rate of production of a radioactive nucleus:

dN
—:R—EN diZO'(Dtht—ﬂN
dt dt
. dN
Rearranging gives: = dt
oDON tgt — AN
dN
Take the integral of both sides: j = j dt
obON tgt — AN

Solution:

oD Nig: t »
N = - “(1-e*) A=0DONu(1—e*)




Saturation Effects
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Targetry: Interation of Radiation & Matter

* Bragg Peak, high energy deposition in a very
Sma” alread 100 - Depth dose curves

90 +
—— Photon
- Proton
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* Charged particle range depends on energy,

mass, charge and target material
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Accelerator Targets

1. Gases:
14N(d,n)50
14N(p,a)1'C

2. Liquids:
160(p, o)’3N
180 p,n)F

3. Solids:

& _ ®Ni(p,n) **Cu
i 89Y(p,n)89Zn
68Zn(p,2n)¢’Ga

("*Ny)
("*Ny)

(H,°0)
(enriched H,'30)

(enriched metallic %4Ni)
(metallic 3%Y)
(enriched metallic 8Zn)
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Accelerator Targets

* Solid Target Materials:

* Thermally conducting

High melting point

_.ow amount of “activation”

Easy to machine

Non-toxic

Separable from desired radioisotope...
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Solid Target Issues

Less common

Often use enriched materials (SSS)
Heating issues

Wide variety of isotopes possible

Usually, more chemistry required for the
separation (begin with dissolution or distillation)
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Solid Targets

Radionuclide Half-life Production Medical Use
Reaction

Copper-64 12.7 h EC/B/B* Cyclotron Imaging/Therapy

Copper-67 2.58d B (y, 184.6 keV) High Energy Therapy
Accelerator

Gallium-67 3.26d EC (v, 184.6 keV) Cyclotron Imaging

Bromine-76

Yttrium-86 14.7 h EC/B* Cyclotron Imaging

Zirconium-89 3.27d EC/B* Cyclotron Imaging

Indium-111 2.80d EC(y, 171.3 keV) Cyclotron Imaging

Thallium-201 3.04d EC(y,167.4 keV) Cyclotron Imaging
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Radiopharmaceuticals

 Aradiopharmaceutical is a drug labeled with a radionuclide to

image a biological process or to deliver therapy to a specific
disease site

* the overall chemical structure determines biological properties

* the radionuclide determines imaging or therapeutic properties

Gﬁ Pharmacophore

HO

el
OH OH ) 2
OH OH
OH 0
OH

2-[18F]fluoro-2-deoxy-D-glucose
(FDG)

HO

D-glucose




Positron Emission Tomography

PET imaging is a very sensitive tool capable of providing quantitative
information about biochemical and physiological processes in a non-
Invasive manner.

coincidence HO

processing unit

o
OH OH

sinogram or OH

list-mode data

7 scone 2-[18F]fluoro-2-deoxy-D-glucose
' (FDG)

annihilation image reconstruction




Positron Emission Tomography

FDG: 59-year-old woman with T-cell lymphoma
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4 months later,

Initial study after chemotherapy




Why Develop New Imaging Agents?

* Imaging more than detection of disease:
* Oncology
 Neurology
* Cardiology

* Imaging can provide more information:
detection, cell proliferation, amyloid burden,
receptor status, oxygenation, microenvironment,
immune cell infiltration............

* Prediction of treatment response.



Expanding the Toolbox of Imaging Agents

[18F]FDG [63Ga]DOTATATE

Courtesy J. McConathy, UAB




Bidirectional
Translational
Molecular Imaging
Program at UAB

Clinical trials with molecular imaging and therapeutics

Isotope production and
MI agent development
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Status of Active Radiotracers for Human Use at UAB

Radiopharmaceutical

[18F]FLT

[3N]NH,

[63Ga] DOTATATE
[8F]FMISO
[89Zr]Trastuzumab
[18F]FET

[*1C]PiB
[*8F]DPA-714
[¢8Ga]PSMA-11
[89Zr]Panitumumab
[*8F]AV1451
[68Ga]GZP*
[11C]Acetate
[89Zr]Oxine/White Blood Cells*
[*8F]FES
[¢8Ga]FAP-2286

Proliferation

Cardiac blood flow

SSTR status

Hypoxia

HER?2 status (breast cancer)
Amino acid transport

Amyloid

TSPO (neuroinflammation)
PSMA status (prostate cancer)
EGFR status (colon cancer)
Tau protein

Granzyme B (Immune Activation)
Cardiac Metabolism

WBC tracking

Estrogen receptor

Fibroblast Activation Protein

Neuroinflammation
through TSPO in microglia
['®F]DPA-714

Amino acid transport in
neuro-oncology
["®FIFET

Myocardial perfusion
["*N]Jammonia

*First in human compound

HER2 as a target for
therapy in breast cancer
[89Zr]trastuzumab




Whole body PET tracers in use at UAB for oncology
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HERZ2 as a target for
therapy in breast cancer
[8%Zr]trastuzumab

Amino acid transport
in prostate cancer
['®F]fluciclovine

Somatostatin receptors
in neuroendocrine cancers
[(8Ga]DOTATATE

Glucose metabolism
in many cancers
['®F]FDG

Bone turnover
in skeletal metastases
['8F]fluoride




Theranostics and radionuclide therapy for cancer

O
H
HO,.C— / | /—LN 7 D-Phe — Cys — Tyr — D-Trp

N N ‘
[‘;"GaNj Thr — Cys — Thr — Lys
Ho,c— \__/ “—co,H

G Pharmacophore

DOTATATE

« Some radiopharmaceutical can be [(8Ga]DOTATATE for imaging (NETSPOT)

labeled for imaging and for therapy:
theranostic approach

» Radionuclide therapies can succeed
after other therapies fail.

 Imaging often guides therapy by
demonstrating the entire tumor burden
expresses the therapeutic target

[(8Ga]DOTATATE ["""LU]DOTATATE




Theranostics and radionuclide therapy for cancer

7 D-Phe — Cys — Tyr — D-Trp

l\'1177 N ‘ ‘
[ '-“j Thr — Cys — Thr — Lys

N N
Ho,c— \__/ “—co,H

G Pharmacophore

DOTATATE

« Some radiopharmaceutical can be [(8Ga]DOTATATE for imaging (NETSPOT)

labeled for imaging and for therapy:
theranostic approach

» Radionuclide therapies can succeed
after other therapies fail.

 Imaging often guides therapy by
demonstrating the entire tumor burden
expresses the therapeutic target

[(8Ga]DOTATATE ["""LU]DOTATATE

['"""Lu]DOTATAE for imaging (Lutathera)




Heavy lon Production @ Notre Dame

A HEAVY-ION APPROACH TO RADIOMEDICINE
A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

by

Sean R. McGuinness 2021
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Heavy lon Production @ Notre Dame

— 12Br* - 3IBr + 2n

JeBr* — ZIBr + 2n

%0 + %Cu — ™Rb* — "Kr+ p+ n
0 + %Cu — ™Rb* — ™Kr+ p+2n
'0 + %Cu — ™Rb* — Br+2p+2n
160) + 65Cy —s 81Rb* — "Kr+ p4+3n

90 4+ 0w — “Bb* —s “Br 4+ 2p13n
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Heavy lon Production @ Notre Dame

PACE4 - %0 on %Cu
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——Br(73) - 34 min
——Br(74) - 25
——Br(73) - 97 min
—=—Kr(76) - 14.8 hr
——Br(76) - 16.2 hr
——Rb(77) - 3.8 min
= Kr(77) - 74.4 min
—=—Br(77) - 57 hr
—+Rb(78) - 17.7 min
—=—K1(78) - Stable
——Br(78) - 6.5 min
«—Rb(79) - 23 min
~=—Kr(79) - 35 hr
——DBr(79) - Stable
-u—K1(80) - Stable

Figure 3.6. PACE4 predicted cross sections for 10O on % Cu.



Counts

Heavy lon Production @ Notre Dame

72 MeV '°0 on ™'Cu - 16 hr EOB

150 on *#tCu

55.0 MeV

1200 s 8.4 pnA

Predicted | Measured

44.7+9 | 51.5%0.04

0.33%0.1 1.0£0.5

1.05£0.2 | 0.95+0.3

3500
511 ke¥ 160 on natcu
3000 —
. 72.0 MeV
2500 — 559 keV
1 o 1500 s 111 pnA
2000 Predicted | Measured
‘ e 1281* + 260 | <LOD*
1500 239 keV
23% 9.21*+1.8 o
1000 - "*Kr g N 5.0*+1.4
1 270 316keV $31 eV By 37.7ETD
500 - M‘L e 139428 | 18.944.5
0 L-._.__Ji__ 13427 34.6+3.5

1.74+£04 | 2.1+14
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0 100 200 300 400 500
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Summary

* Radioisotopes continue to play an important role in medicine
and other areas of science. This role is expanding.

* A wide variety of half-lives, imaging characteristics and
chemistries leads to a unique toolbox for the development of
new nuclear medicine imaging and therapeutic agents.

* Development and increased use of these agents will require
collaborations between chemists, biologists, physicists and
physicians.

gpeaslee@nd.edu
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