
Production of Medical Isotopes

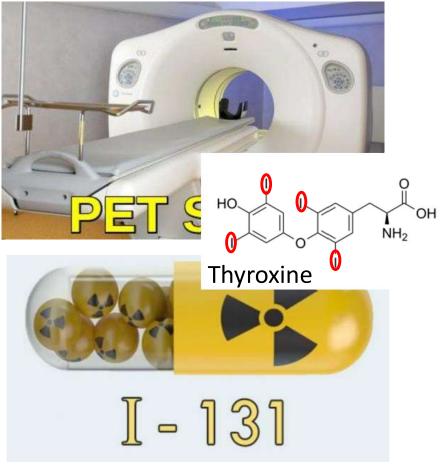
* Thanks to Suzy Lapi for slides...

Production of Medical Isotopes

Outline

- Applied vs. Basic Nuclear Science
- Radioisotopes and Nuclear Medicine
 - Accelerator-based
 - Reactor-based
- Current Radioisotopes
- Where the Future Lies...

Basic vs. Applied Science



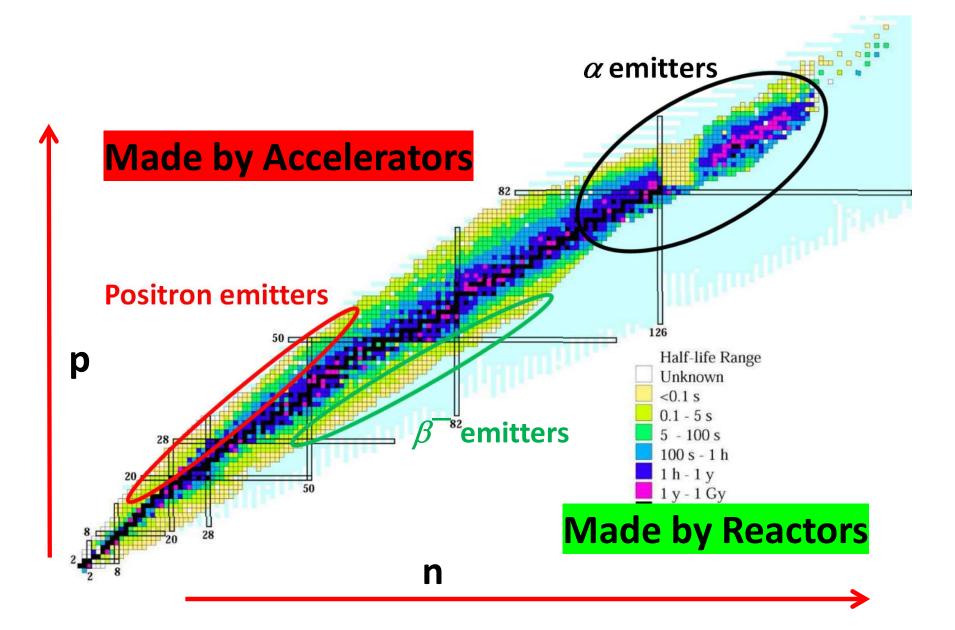
What is Nuclear Medicine?

The use of radioisotopes or nuclear technology to image or to treat disease...

40 million nuclear medicine procedures are performed each year (50% in US)... Growing at 5 – 10% per year....

What is Nuclear Medicine?

- Imaging/diagnostic radioisotopes
- Therapeutic radioisotopes
- Theranostic radioisotopes


Positron Emission Tomography (PET) ¹¹C, ¹⁸F Single Photon Emission Computerized Tomography (SPECT) ^{99m}Tc, ⁶⁷Ga

Brachytherapy ⁶⁰Co, ¹²⁵I Radiopharmaceuticals ¹³¹Ι, ⁹⁰Υ

What Makes a Good Radioisotope?

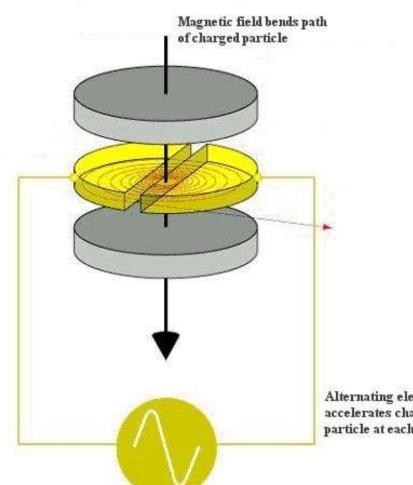
- Radioisotopes have the same chemical properties and will behave similarly as nonradioactive isotopes – can be used as tracers...
- Appropriate half-life: not too short, not too long
- (both physical and biological half-life)
- Type of decay is important...
- Availability...
- Purity....

How to make Radioisotopes?

Accelerator Methods of Production

- Usually light-ion accelerators: protons (most common), ²H, ³He, ⁴He
- Typically accelerated by electric fields (electostatic accelerators & cyclotrons)
- Energy range of 10 25 MeV protons will result in spallation reactions = lots of isotopes
- Need targetry (gas, liquid and solid targets)
- Need radiochemical separation & purification

Cyclotron Production of Medical Isotopes


 Over 1500 cyclotrons world-wide dedicated to medical radioisotope production...(244 in US)

https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx

Why Cyclotrons?

- Cyclic or repetitive application of force... allows small force to be used many times
- Small device
- High power

Alternating electric field accelerates charged particle at each gap crossing

GE PETtrace

Which Nuclear Reactions?

- Governed by charged particle excitation functions
- Low energies = low σ usually
- σ usually increases to a maxima and then decreases due to competing reaction channels
- Usually much lower $\boldsymbol{\sigma}$ than for neutron reactions

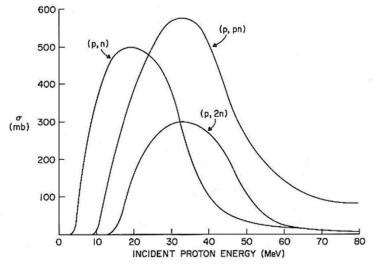


Figure 4.4. Excitation functions for several common proton-induced reactions on the same low-Z target nuclide.

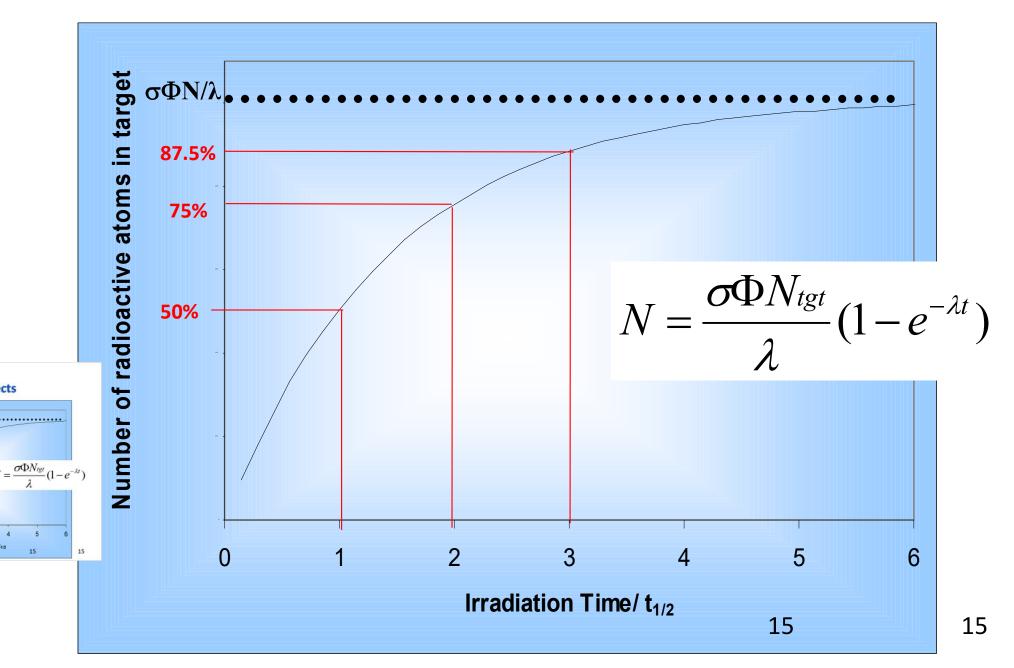
Production of Radioactive Nuclei

• Rate of production of a radioactive nucleus:

$$\frac{dN}{dt} = R - \lambda N$$

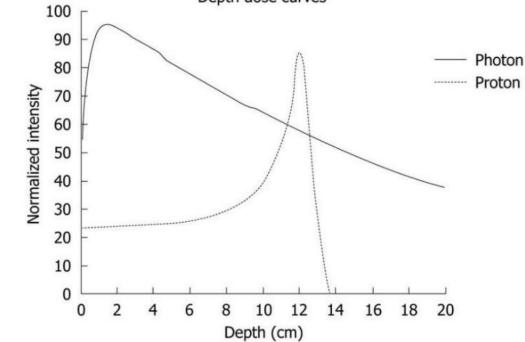
Rearranging gives:

$$\frac{dN}{dt} = \sigma \Phi N_{tgt} - \lambda N$$
$$\frac{dN}{\sigma \Phi N_{tgt} - \lambda N} = dt$$
$$\int \frac{dN}{\sigma \Phi N_{tgt} - \lambda N} = \int dt$$


Take the integral of both sides:

Solution:

$$N = \frac{\sigma \Phi N_{tgt}}{\lambda} (1 - e^{-\lambda t})$$


$$A = \sigma \Phi N_{tgt} (1 - e^{-\lambda t})$$

Saturation Effects

Targetry: Interation of Radiation & Matter

Bragg Peak, high energy deposition in a very small area

• Charged particle range depends on energy, mass, charge and target material

Accelerator Targets

1. Gases: ¹⁴N(d,n)¹⁵O

¹⁴N(p,α)¹¹C

(¹⁴N₂) (¹⁴N₂)

2. Liquids: ¹⁶O(p, α)¹³N ¹⁸O(p,n)¹⁸F

 $(H_2^{16}O)$ (enriched $H_2^{18}O$)

3. Solids:

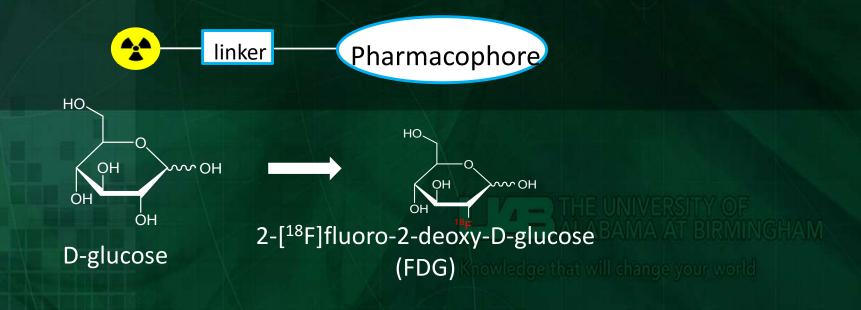
⁶⁴Ni(p,n) ⁶⁴Cu ⁸⁹Y(p,n)⁸⁹Zn ⁶⁸Zn(p,2n)⁶⁷Ga

(enriched metallic ⁶⁴Ni) (metallic ⁸⁹Y) (enriched metallic ⁶⁸Zn)

Accelerator Targets

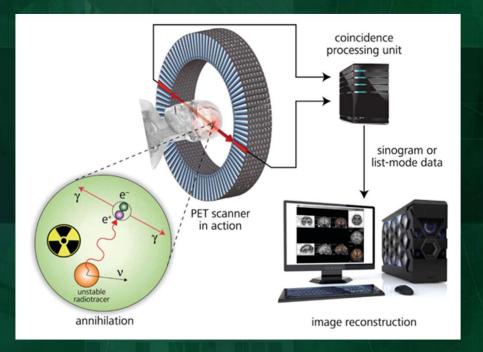
- Solid Target Materials:
 - Thermally conducting
 - High melting point
 - Low amount of "activation"
 - Easy to machine
 - Non-toxic
 - Separable from desired radioisotope...

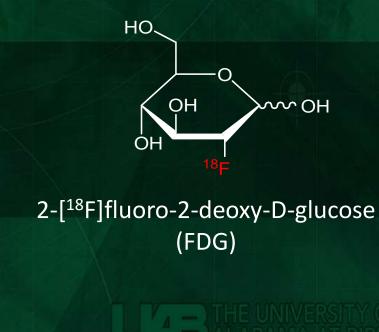
Solid Target Issues


- Less common
- Often use enriched materials (\$\$\$)
- Heating issues
- Wide variety of isotopes possible
- Usually, more chemistry required for the separation (begin with dissolution or distillation)

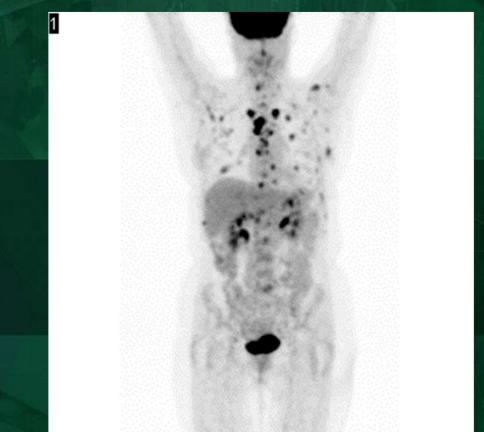
Solid Targets

Radionuclide	Half-life	Decay	Production Reaction	Medical Use
Copper-64	12.7 h	EC/β⁻/β⁺	Cyclotron	Imaging/Therapy
Copper-67	2.58 d	β ⁻ (γ, 184.6 keV)	High Energy Accelerator	Therapy
Gallium-67	3.26 d	EC (γ, 184.6 keV)	Cyclotron	Imaging
Bromine-76				
Yttrium-86	14.7 h	EC/β ⁺	Cyclotron	Imaging
Zirconium-89	3.27 d	EC/β ⁺	Cyclotron	Imaging
Indium-111	2.80 d	EC (γ, 171.3 keV)	Cyclotron	Imaging
Thallium-201	3.04 d	EC (γ,167.4 keV)	Cyclotron	Imaging


Radiopharmaceuticals

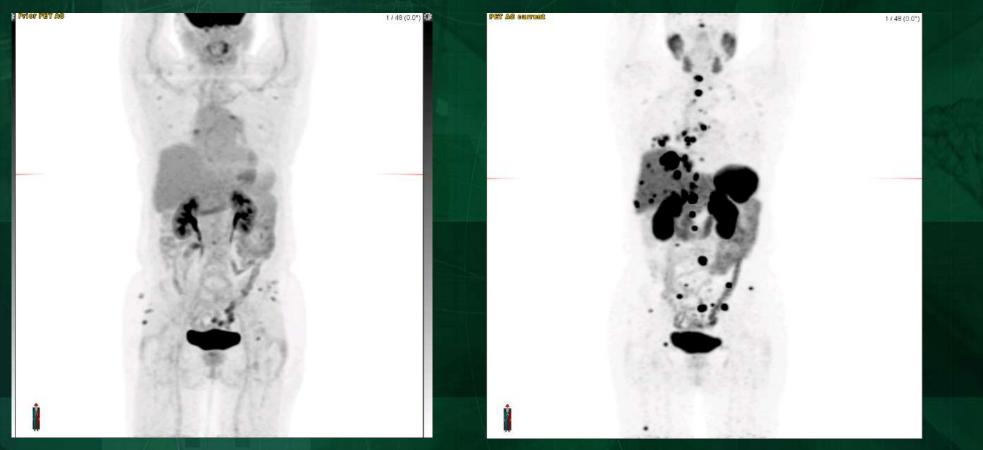

- A radiopharmaceutical is a drug labeled with a radionuclide to image a biological process or to deliver therapy to a specific disease site
 - the overall chemical structure determines biological properties
 - the radionuclide determines imaging or therapeutic properties

Positron Emission Tomography


PET imaging is a very sensitive tool capable of providing quantitative information about biochemical and physiological processes in a non-invasive manner.

Positron Emission Tomography

FDG: 59-year-old woman with T-cell lymphoma

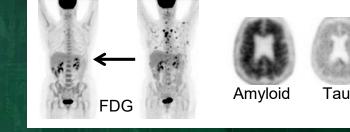

Initial study

4 months later, after chemotherapy

Why Develop New Imaging Agents?

- Imaging more than detection of disease:
 - Oncology
 - Neurology
 - Cardiology
- Imaging can provide more information: detection, cell proliferation, amyloid burden, receptor status, oxygenation, microenvironment, immune cell infiltration......
- Prediction of treatment response.

Expanding the Toolbox of Imaging Agents



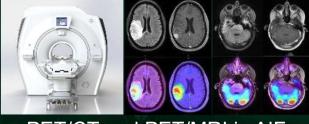
[¹⁸F]FDG

[⁶⁸Ga]DOTATATE

Courtesy J. McConathy, UAB

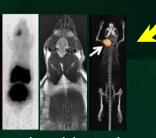
Bidirectional Translational Molecular Imaging Program at UAB


Clinical trials with molecular imaging and therapeutics



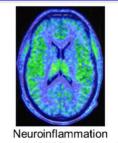
H₂N, CO₂H

Isotope production and MI agent development

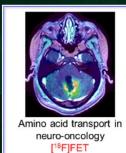


PET/CT and PET/MRI in AIF

In vitro testing


HER2

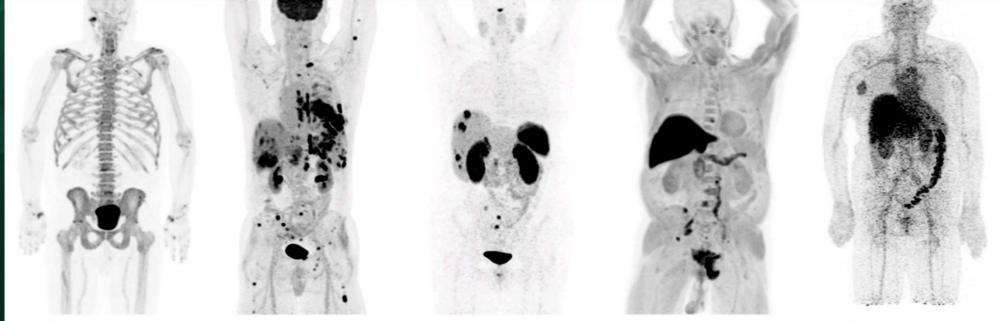
Small animal imaging


A =)ALABAMA AT BIRMINGH/

Status of Active Radiotracers for Human Use at UAB

Radiopharmaceutical	Use
[¹⁸ F]FLT	Proliferation
[¹³ N]NH ₃	Cardiac blood flow
[⁶⁸ Ga]DOTATATE	SSTR status
[¹⁸ F]FMISO	Нурохіа
[⁸⁹ Zr]Trastuzumab	HER2 status (breast cancer)
[¹⁸ F]FET	Amino acid transport
[¹¹ C]PiB	Amyloid
[¹⁸ F]DPA-714	TSPO (neuroinflammation)
[⁶⁸ Ga]PSMA-11	PSMA status (prostate cancer)
[⁸⁹ Zr]Panitumumab	EGFR status (colon cancer)
[¹⁸ F]AV1451	Tau protein
[⁶⁸ Ga]GZP*	Granzyme B (Immune Activation)
[¹¹ C]Acetate	Cardiac Metabolism
[⁸⁹ Zr]Oxine/White Blood Cells*	WBC tracking
[¹⁸ F]FES	Estrogen receptor
[⁶⁸ Ga]FAP-2286	Fibroblast Activation Protein

Neuroinflammation through TSPO in microglia [¹⁸F]DPA-714

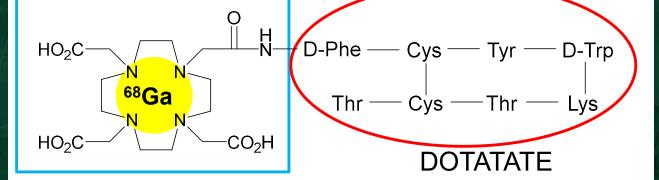

Myocardial perfusion [¹³N]ammonia

HER2 as a target for therapy in breast cancer [⁸⁹Zr]trastuzumab

*First in human compound

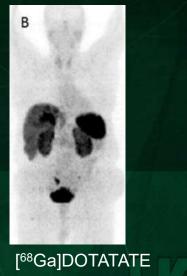
compound

Whole body PET tracers in use at UAB for oncology


Bone turnover in skeletal metastases [¹⁸F]fluoride Glucose metabolism in many cancers [¹⁸F]FDG Somatostatin receptors in neuroendocrine cancers [⁶⁸Ga]DOTATATE

Amino acid transport in prostate cancer [¹⁸F]fluciclovine HER2 as a target for therapy in breast cancer [⁸⁹Zr]trastuzumab

Theranostics and radionuclide therapy for cancer

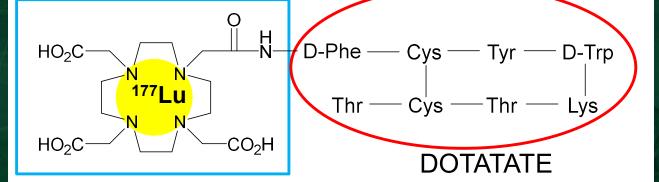


• Some radiopharmaceutical can be labeled for imaging and for therapy: theranostic approach

• Radionuclide therapies can succeed after other therapies fail.

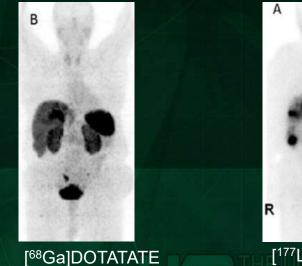
• Imaging often guides therapy by demonstrating the entire tumor burden expresses the therapeutic target

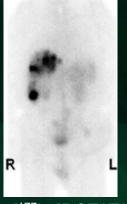
[⁶⁸Ga]DOTATATE for imaging (NETSPOT)



[¹⁷⁷Lu]DOTATATE

Theranostics and radionuclide therapy for cancer




• Some radiopharmaceutical can be labeled for imaging and for therapy: theranostic approach

• Radionuclide therapies can succeed after other therapies fail.

• Imaging often guides therapy by demonstrating the entire tumor burden expresses the therapeutic target

[68Ga]DOTATATE for imaging (NETSPOT)

[¹⁷⁷Lu]DOTATATE

[¹⁷⁷Lu]DOTATAE for imaging (Lutathera)

A HEAVY-ION APPROACH TO RADIOMEDICINE

A Dissertation

Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by Sean R. McGuinness

2021

$${}^{4}_{2}He + {}^{75}_{33}As \rightarrow {}^{79}_{35}Br^{*} \rightarrow {}^{77}_{35}Br + 2n$$
$${}^{1}_{1}H + {}^{78}_{34}Se \rightarrow {}^{79}_{35}Br^{*} \rightarrow {}^{77}_{35}Br + 2n$$

¹⁶O + ⁶³Cu
$$\longrightarrow$$
 ⁷⁹Rb^{*} \longrightarrow ⁷⁷Kr + p + n
¹⁶O + ⁶³Cu \longrightarrow ⁷⁹Rb^{*} \longrightarrow ⁷⁶Kr + p + 2 n
¹⁶O + ⁶³Cu \longrightarrow ⁷⁹Rb^{*} \longrightarrow ⁷⁶Br + 2 p + 2 n
¹⁶O + ⁶⁵Cu \longrightarrow ⁸¹Rb^{*} \longrightarrow ⁷⁷Kr + p + 3 n
¹⁶O + ⁶⁵Cu \longrightarrow ⁸¹Rb^{*} \longrightarrow ⁷⁶Br + 2 p + 3 n

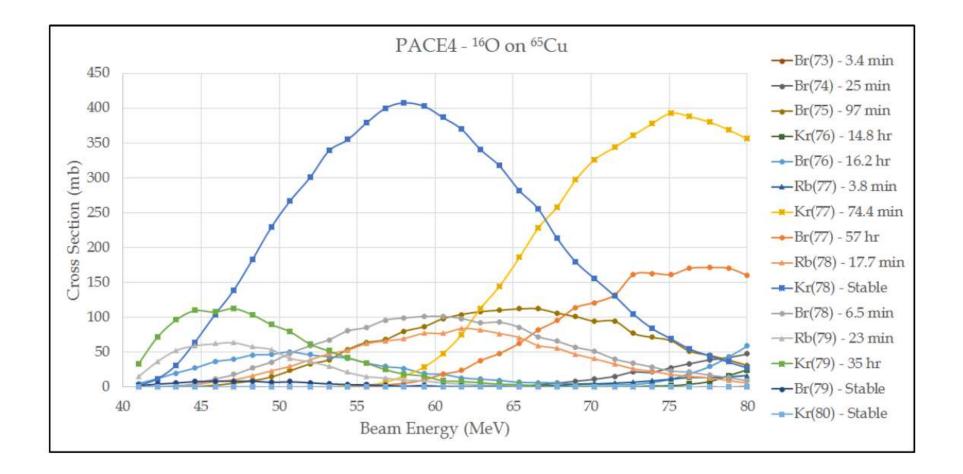
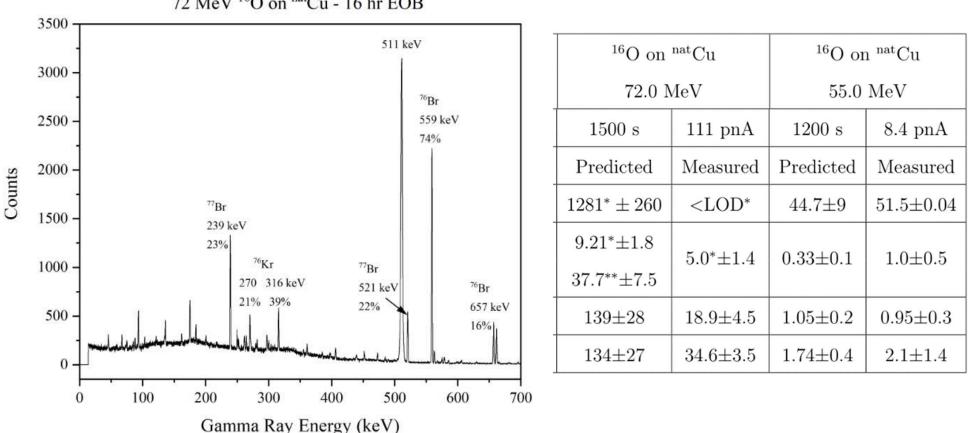



Figure 3.6. PACE4 predicted cross sections for ¹⁶O on ⁶⁵Cu.

72 MeV ¹⁶O on ^{nat}Cu - 16 hr EOB

Summary

- Radioisotopes continue to play an important role in medicine and other areas of science. This role is expanding.
- A wide variety of half-lives, imaging characteristics and chemistries leads to a unique toolbox for the development of new nuclear medicine imaging and therapeutic agents.
- Development and increased use of these agents will require collaborations between chemists, biologists, physicists and physicians.