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Central challenge: Starting from quantum chromodynamics (QCD),
can we derive the properties of nuclei (and matter)?
NUCLEAR PHYSICS
Low energy: Nuclear structure, nuclear reactions & astrophysics
Intermediate energy: Nucleon and hadronic structure
Relativistic heavy ion collisions & quark matter
Neutrino physics, the standard model, and beyond
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Nucleon interactions Shell structure Collective deformation

Cluster correlations Pair condensation

Many-particle Schrodinger equation
A 2

A
Z(—h—V?) VL Vin-x) ¥ =EY

2 .
i=1 mi ij=1

¥Y(ry,ra,r3,...,r4) = ?

M. A. Caprio, University of Notre Dame



Goal of ab initio nuclear structure
First-principles understanding of nature = Nuclei from QCD

Can we understand the origin of “simple patterns in complex nuclei”?

i.e., emergent collective correlations @/
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Some comments on nuclear structure
The nucleus is fundamentally a quantum many-body system
determined by its constituents (nucleons) and their interactions

We are forced to subject this many-body problem to brutal
approximations

Robust, simple patterns emerge, in form of collective correlations

Symmetries and symmetry breaking frequently provide an
organizing principle  “Physics is symmetries”

Structure bridges energy scales for first-principles understanding of
nature (ab initio?)

Structure underlies reactions (astrophysics, applications) and
interactions (electroweak, beyond the standard model)

Nuclear structure is part of quantum many-body theory (study of
condensates)
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Outline

— Nuclear structure tour
— Shell model as baseline framework for structure

— Observables and illustrations
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Proton number (2)

Adapted from B. Schwarzschild,
Physics Today 63(8), 16 (2010) &
Nuclear Physics: Exploring the
Heart of Matter (NAS, 2010).
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“Magic” numbers: 2, 8, 20, 28, 50, 82, 126
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From simple shell structure to collective dynamics
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From simple shell structure to collective dynamics
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Kenneth S. Krane, Introductory Nuclear Physics (Wiley, New York, 1988).
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From simple shell structure to collective dynamic
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David J. Rowe and John L. WooHundamentals of Nuclear Models (World Scien-
tific, Singapore, 2010).
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From simple shell structure to collective dynamics
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Proton number (2)

Adapted from B. Schwarzschild,
Physics Today 63(8), 16 (2010) &
Nuclear Physics: Exploring the
Heart of Matter (NAS, 2010).
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Observed energy levels for A = 6 nuclei
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The size of halo nuclei

Nuclear halos are very atypical:
¢ Large matter distribution  and different charge and matter radii
Departing from the R~A'3 dependance
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Cluster structure in light nuclei
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Outline

— Nuclear structure tour
— Shell model as baseline framework for structure

— Observables and illustrations
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Approaches to Nuclear Structure

“The first, the basic approach, is to study the elementary particles, their
properties and mutual interaction. Thus one hopes to obtain knowledge of
the nuclear forces. If the forces are known, one should, in principle, be
able to calculate deductively the properties of individual nuclei. Only after
this has been accomplished can one say that one completely understands

nuclear structure...

The other approach is that of the experimentalist and consists in obtaining
by direct experimentation as many data as possible for individual nuclei.
One hopes in this way to find regularities and correlations which give a
clue to the structure of the nucleus... The shell model, although proposed
by theoreticians, really corresponds to the experimentalist’s approach.”

—M. Goeppert-Mayer, Nobel Lecture YVvvvvvvvvvvvvvvvvey

Ab initio approach vs. phenomenological

So far, nuclear physics largely phenomenological

Can we describe nuclei from first principles?
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Three-dimensional harmonic oscillator orbitals

| One patrticle in three dimensions
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Shell model orbitals
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The many-particle Hilbert space

For a system of distinguishable particles, the Hilbert space consists of all
linear combinations of direct products of single particle states.

SIMPLE EXAMPLE: 2 particles, in 2 states (|) and |T))
17P) = ap I M+ ary M1 + ap D112 +ag 11112

NucLEAR PROBLEM: A particles, with single-particle basis states |nljm)
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But for indistinguishable particles (specifically, fermions), only linear
combinations antisymmetric under interchange of particles are permitted.
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Shell model and collective correlations
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Independent particle modeH(~ Ho): Eigenstate approximated as single configuration
Classic shell model (“configuration interaction” calcubex):
Many-body problem restricted t@lence shell
Neglected (“inert”) core leads to effective interactiorvafence nucleons

Open shellf\e < (Vieg] permits collective phenomena:
Large number of single-particle configurations energ#éjieecessible
Little energy required for excitation
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Single-particle energies in the pf shell
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Model space dimensions in the pf shell
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Nuclear structure of *°Ni in the pf shell
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M. Horoi et al., PRC 73, 061305(R) (2006). M-scheme in N-particle N-hole truncation.
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— Nuclear structure tour
— Shell model as baseline framework for structure

— Observables and illustrations
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How is nuclear structure studied?
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Transition
probability;
Multipolarity

0+
J*

Obtain detailed information on physical structure and excitation
phenomena from spectroscopic properties
— Level energies and quantum numbers
— Electromagnetic transition probabilities and multipolarities
‘ Fermi's golden rule Ti¢ O |(% | T |¥H)? ‘

Electromagnetic probes-Ecattering)a decay,3 decay, nucleon
transfer reactions, .
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