Nuclear structure theory I: Foundations and phenomena

Mark A. Caprio
Department of Physics and Astronomy
University of Notre Dame

Exotic Beam Summer School
Notre Dame, IN
June 9, 2022

Central challenge: Starting from quantum chromodynamics (QCD), can we derive the properties of nuclei (and matter)?

NucLEAR PHYSICS

Low energy: Nuclear structure, nuclear reactions \& astrophysics Intermediate energy: Nucleon and hadronic structure
Relativistic heavy ion collisions \& quark matter Neutrino physics, the standard model, and beyond

Figure from The Frontiers of Nuclear Science: A Long-Range Plan, NSF/DOE NSAC (2007).

Many-particle Schrödinger equation

$$
\begin{aligned}
& \sum_{i=1}^{A}\left(-\frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}\right) \Psi+\frac{1}{2} \sum_{i, j=1}^{A} V\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) \Psi=E \Psi \\
& \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{A}\right)=?
\end{aligned}
$$

Goal of $a b$ initio nuclear structure

First-principles understanding of nature Nuclei from QCD
Can we understand the origin of "simple patterns in complex nuclei"?
i.e., emergent collective correlations

Quarks

Nucleon-nucleon interactions

Quantum manybody problem

Nuclear structure

Nuclear reactions
$\begin{aligned} & \mathrm{y}=2028 \\ & \text { Ab initio? }\end{aligned}$
$\xrightarrow[\text { Neutron number }(M)]{ }$

Adapted from B. Schwarzschild, Physics Today 63(8), 16 (2010).

Some comments on nuclear structure

The nucleus is fundamentally a quantum many-body system determined by its constituents (nucleons) and their interactions We are forced to subject this many-body problem to brutal approximations
Robust, simple patterns emerge, in form of collective correlations
Symmetries and symmetry breaking frequently provide an organizing principle "Physics is symmetries"

Structure bridges energy scales for first-principles understanding of nature ($a b$ initio?)
Structure underlies reactions (astrophysics, applications) and interactions (electroweak, beyond the standard model)
Nuclear structure is part of quantum many-body theory (study of condensates)

Outline

- Nuclear structure tour
- Shell model as baseline framework for structure
- Observables and illustrations

From simple shell structure to collective dynamics

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).

Observed energy levels for $A=6$ nuclei

Figure from D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002).

The size of halo nuclei

Nuclear halos are very atypical:

- Large matter distribution

Departing from the $\mathrm{R} \sim \mathrm{A}^{1 / 3}$ dependance

${ }^{11} \mathrm{Li}$

- and different charge and matter radii

Cluster structure in light nuclei

Outline

- Nuclear structure tour
- Shell model as baseline framework for structure
- Observables and illustrations

Approaches to Nuclear Structure

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces. If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei. Only after this has been accomplished can one say that one completely understands nuclear structure...

The other approach is that of the experimentalist and consists in obtaining by direct experimentation as many data as possible for individual nuclei. One hopes in this way to find regularities and correlations which give a clue to the structure of the nucleus... The shell model, although proposed by theoreticians, really corresponds to the experimentalist's approach."
-M. Goeppert-Mayer, Nobel Lecture
Ab initio approach vs. phenomenological
So far, nuclear physics largely phenomenological Can we describe nuclei from first principles?

Three-dimensional harmonic oscillator orbitals

One particle in three dimensions

$$
\begin{aligned}
& V(r)=\frac{m \omega^{2}}{2} r^{2} \quad \text { Central force } \\
& \Psi(r, \theta, \varphi)=\frac{R_{n l}(r)}{r} Y_{l m}(\theta, \varphi) \\
& m=-l,-l+1, \ldots, l \\
& N=2 n+l \quad \text { Major shell }
\end{aligned}
$$

"Oscillator basis" depends upon length parameter b (or on $\hbar \omega$)

$$
R_{n l}(r) \propto(r / b)^{l+1} L_{n}^{(l+1 / 2)}\left[(r / b)^{2}\right] e^{-(r / b)^{2} / 2} \quad b(\hbar \omega)=\frac{(\hbar c)}{\left[\left(m_{N} c^{2}\right)(\hbar \omega)\right]^{1 / 2}}
$$

Couple orbital angular momentum with spin (jj-coupling)
\Rightarrow Single particle basis states $|n l j m\rangle$

Shell model orbitals

The many-particle Hilbert space

For a system of distinguishable particles, the Hilbert space consists of all linear combinations of direct products of single particle states.
Simple example: 2 particles, in 2 states $(|\downarrow\rangle$ and $|\uparrow\rangle)$

$$
\left|\Psi^{(2)}\right\rangle=a_{\uparrow \uparrow}|\uparrow\rangle_{1}|\uparrow\rangle_{2}+a_{\uparrow \downarrow}|\uparrow\rangle_{1}|\downarrow\rangle_{2}+a_{\downarrow \uparrow|\downarrow\rangle_{1}|\uparrow\rangle_{2}+a_{\downarrow \downarrow}|\downarrow\rangle_{1}|\downarrow\rangle_{2} .}
$$

Nuclear problem: A particles, with single-particle basis states \mid nljm \rangle

$$
\left|\Psi^{(A)}\right\rangle=\sum_{\substack{n_{1} l_{1} j_{1} m_{1} \\ n_{2} l_{2} j_{2} m_{2}}} a_{\left(n_{1} l_{1} j_{1} m_{1}\right) \cdots\left(n_{A} l_{A} j_{A} m_{A}\right)}\left|n_{1} l_{1} j_{1} m_{1}\right\rangle_{1}\left|n_{2} l_{2} j_{2} m_{2}\right\rangle_{2} \cdots\left|n_{A} l_{A} j_{A} m_{A}\right\rangle_{A}
$$

But for indistinguishable particles (specifically, fermions), only linear combinations antisymmetric under interchange of particles are permitted.

$$
\left|\Psi^{(A)}\right\rangle=\sum_{\substack{n_{1} l_{1} j_{1} m_{1} \\ n_{2} l_{i} m_{2} m_{2}}} a_{\left(n_{1} l_{1} j_{1} m_{1}\right) \cdots\left(n_{A} l_{A} j_{A} m_{A}\right)}^{|\uparrow \downarrow\rangle=\frac{1}{\sqrt{2}}\left[|\uparrow\rangle_{1}|\downarrow\rangle_{2}-|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right] \quad \text { Pauli } \checkmark} \underbrace{\mid\left(n_{1} l_{1} j_{1} m_{1}\right)\left(n_{2} l_{2} j_{2} m_{2}\right) \cdots}_{\text {Protons }} \underbrace{\left.\cdots\left(n_{A} l_{A} j_{A} m_{A}\right)\right\rangle}_{\text {Neutrons }}\rangle
$$

Shell model and collective correlations

$$
\begin{aligned}
H= & \sum_{i=1}^{A}-\frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+\sum_{i, j=1}^{A} V\left(\mathrm{r}_{i}-\mathrm{r}_{j}\right)
\end{aligned}
$$

Independent particle model $\left(H \approx H_{0}\right)$: Eigenstate approximated as single configuration Classic shell model ("configuration interaction" calculation):

Many-body problem restricted to valence shell
Neglected ("inert") core leads to effective interaction of valence nucleons
Open shell $\left[\Delta \varepsilon \lesssim\left\langle V_{\text {res }}\right\rangle\right]$ permits collective phenomena:
Large number of single-particle configurations energetically accessible
Little energy required for excitation

Single-particle energies in the $p f$ shell

Figure courtesy United States Postal Service

Model space dimensions in the $p f$ shell

Nuclear structure of ${ }^{56} \mathrm{Ni}$ in the $p f$ shell

FIG. 1. The evolution of the first three $0^{+}, 2^{+}, 4^{+}$, and 6^{+}states as a function of the truncation level t.

Outline

- Nuclear structure tour
- Shell model as baseline framework for structure
- Observables and illustrations

How is nuclear structure studied?

Obtain detailed information on physical structure and excitation phenomena from spectroscopic properties

- Level energies and quantum numbers
- Electromagnetic transition probabilities and multipolarities

$$
\begin{array}{|lc|}
\left.\hline \text { Fermi's golden rule } \quad T_{i \rightarrow f} \propto\left|\left\langle\Psi_{f}\right| \hat{T}\right| \Psi_{i}\right\rangle\left.\right|^{2} \\
\hline
\end{array}
$$

Electromagnetic probes (e-scattering), α decay, β decay, nucleon transfer reactions, ...

