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Shell model and collective correlations
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Independent particle model (H ≈ H0): Eigenstate approximated as single configuration

Classic shell model (“configuration interaction” calculation):

Many-body problem restricted tovalence shell
Neglected (“inert”) core leads to effective interaction ofvalence nucleons

Open shell [∆ε . 〈Vres〉] permits collective phenomena:
Large number of single-particle configurations energetically accessible
Little energy required for excitation

M. A. Caprio, University of Notre Dame



Flow chart for ab initio nuclear theory
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Flow chart for phenomenological nuclear theory
(extreme case)
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Obtain detailed information on physical structure and excitation
phenomena from spectroscopic properties

– Level energies and quantum numbers
– Electromagnetic transition probabilities and multipolarities

Fermi’s golden rule Ti→ f ∝ |〈Ψf | T̂ |Ψi〉|2

Electromagnetic probes (e-scattering),α decay,β decay, nucleon
transfer reactions,. . .
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Multipolarity of nuclear radiation
Homogeneous charged fluid
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Electric quadrupole HE2L
Relative motion of proton and neutron density
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Magnetic dipole HM1L
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Multipole operator definitions
Electric quadrupole (E2) operator

Q2=

A∑
i=1

eir2
i Y2u(r̂i) =Qp + Qn ep = e en = 0

Magnetic dipole (M1) operator
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`
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s si
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 transfer reactions probe nuclear response to the 
addition of nucleon

 information about nuclear structure from:

 angular differential cross section
 absolute value
 position
 width (in the continuum)

Nuclear structure with transfer reactions

A standard approach to reactions:

spectroscopic factor 
from structure model

cross section from 
few-body/reaction models

can suffer from inconsistency between the two schemes !

courtesy of J. Rotureau and G. Potel
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Outline

– Isospin
– Pairing
– Deformation: Rotation

– Deformation: Collective models
– Ab initio theory
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Observed energy levels for A = 6 nuclei

82

A = 6,6Be,6B,6C

D.R. Tilley et al. / Nuclear Physics A 708 (2002) 3–163

4. 6Li( 3He, t)6Be, Qm = −4.3063

Triton groups have been observed to6Be∗(0, 1.7). The width of the ground state is
89± 6 keV. The parameters of the excited state are displayed in Table 6.8 of [74AJ01].
No other excited states have been seen withEx < 13 MeV. There is no evidence for
a state near 11.5 MeV: see [79AJ01]. [87BO39] have studied the decay of6Be∗(1.7)
at E(3He) = 38.7 MeV: they report that the branching ratio for decay via the emission
of 2He (T = 1, S = 0) is 0.60± 0.15: see also reactions 21 in6He and 38 in6Li and
[84BO49, 85BO56, 88BO1J]. See also [84AJ01, 87DA31] (theory) and9B.

In more recent work, kinematically complete experiments for6Li( 3He, t)6Be∗(0, 1.7)→
α + p + p were reported in [88BO38, 89BO1N, 89BO25, 89BO42] and in [92BO25,
93BO38] (studied decay mechanism). Measurements of differential cross sections at
E(3He)= 93 MeV are described in [94DOZW].

6B,6C
(not illustrated)

Not observed: see [79AJ01, 84AJ01, 89GR06] for (6Li(π+,π−) at Eπ+ = 180,
240 MeV, [93PO11] (properties of exotic light nuclei) and [98SU18].

Fig. 7. Isobar diagram,A= 6. For notation see Fig. 3.Figure from D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002).
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Observed energy levels for A = 7 nuclei
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Fig. 11. Isobar diagram,A= 7. For notation see Fig. 3.

Figure from D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002).
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Observed energy levels for A = 12 nuclei

Figure from F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).



What is a Lie algebra?
A vector space...

X ,Y ∈ V ⇒ X +Y ∈ V , aX ∈ V Closure
a(X +Y ) = aX +aY Linearity

...with a vector product (“Lie product”)

[X ,Y ] ∈ V Closure
[aX +bY,Z] = a[X ,Z]+b[Y,Z] Linearity
[X ,Y ] = −[Y,X ] Antisymmetry
[A, [B,C]]+ [C, [A,B]]+ [B, [C,A]] = 0 Jacobi identity

Note: A vector space is spanned byd basis vectorsX1, X2, . . ., Xd.

V =
{ d

∑
i=1

aiXi

∣∣∣ ai ∈ R orC
}

d = “dimension” ofV

M. A. Caprio, University of Notre Dame



Why should we care?
There are Lie algebras hidden inside our QM problems! Two vector spaces...

1) Space ofstates — “Hilbert space”
2) Space ofoperators (!)

a(X̂ + Ŷ ) = aX̂ +aŶ

[X̂ ,Ŷ ] ≡ X̂Ŷ − Ŷ X̂ is a “Lie product”X
EXAMPLE Angular momentum algebra [SU(2)]

basis Jx, Jy, Jz

closure? [Jx,Jy] = iJz [Jy,Jz] = iJx [Jz,Jx] = iJy X
Lie algebra operators as “generators” for continuous transformations

Lie algebrag
R=eiX

⇐==⇒ Lie groupG e.g., R(θ) = ei(θxJx+θyJy+θzJz)

Symmetry — invariance of Hamiltonian under tranformation

R(θ)HR(θ)† = H ⇔ [Ji,H] = 0 (i = 1,2,3)

Eigenvalues form degenerate multiplets(M = −J, . . . ,J −1,J)

Eigenstates rotate into each otherR(θ)|JM〉 = ∑J
M′=−J D

(J)
M′M(θ)|JM′〉

M. A. Caprio, University of Notre Dame



SU(2) in a nutshell
SU(2) ∼ SO(3) (2×2 spin rotation or 3×3 Euler rotation matrices)

Ladder operators J± = Jx± iJy Raises or lowers M value
Weight operator J0 = Jz “Weighs” a state for its M value

Everything follows from the commutators∗...

[J0,J+] = +J+ [J0,J−] = −J− [J+,J−] = 2J0

Action of generators

J±|JM〉 =
√

(J∓M)(J±M +1)|J(M±1)〉 J0|JM〉 = M|JM〉

States form “irreducible representation” connected by ladder operators

M
-J ∫ J-1 J

J≤ J≤ J≤ J≤ J≤ J≤

Set may be labeled by its “highest weight”Mmax(≡ J)

∗Actually, these plus the relationsJ†
+ = J− andJ†

0 = J0...

M. A. Caprio, University of Notre Dame
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Symmetries in nuclei
Fundamental symmetries

– Rotation [SU(2)] & parity ⇒ J,P
Approximate symmetries of the many-body problem

– Isospin [SU(2)] & Wigner spin-isospin [SU(4)]
– Pairing quasispin symmetries: SU(2), SO(5), . . .
– Phase space (or oscillator) symmetries: Elliott SU(3) & Sp(3,R)

Symmetries of collective degrees of freedom
– Bosonic models: U(6), . . .
– Symplectic collective model [Sp(3,R) again!] Collective flow

D. J. Rowe, A. E. McCoy, and M. A. Caprio, Physica Scripta 91, 033003 (2016).

But symmetries are broken, so... Why symmetries?
– Identifying and characterizing emergent correlations

E.g., isospin multiplets, Elliott rotation
– Symmetry as computational tool H = H(0)

symm+H′

“Right” basis for decomposing and truncating many-body space
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Outline

– Isospin
– Pairing
– Deformation: Rotation

– Deformation: Collective models
– Ab initio theory
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1 Elements of nuclear structure

can claim to have explained the phenomena in terms of interacting neutrons and

protons. This is a primary objective of nuclear physics research.

1.3.1 Differences in binding energies and radii

Important indicators of nuclear shell structure come from binding-energy differ-

ences. Binding-energy differences between neighbouring nuclei are called separation

energies. One-neutron separation energies are defined by the expression

Sn(A, Z) = B(A, Z) − B(A − 1, Z), (1.4)

where B(A, Z) is the binding energy of the nucleus with A nucleons and Z protons.

Two-neutron separation energies are defined by

S2n(A, Z) = B(A, Z) − B(A − 2, Z). (1.5)

Proton separation energies are defined in a similar way.

Figure 1.8 shows the one-neutron separation energies for the calcium isotopes.

This figure has two striking features. The first is the saw-tooth nature of the plot.

Figure 1.8: One-neutron separation ener-
gies, Sn, for the calcium isotopes. Note
the odd-even staggering between neigh-
bouring nuclei and the strong disconti-
nuities that occur between A = 40 and
41 and between A = 48 and 49 (cf. Fig-
ure 1.9). (The data are from Audi G.,
Wapstra A.H. and Thibault C. (2003),
Nucl. Phys. A729, 337.)
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The second is the discontinuities that occur between A = 40 and 41 and between

A = 48 and 49. The saw-tooth behaviour shows that it requires more energy to

remove a neutron when the neutron number is initially even than when it is odd.

This odd-even staggering effect is a manifestation of the predisposition of nucleons

to form strongly-coupled pairs (cf. comments below and in Section 1.4). Thus, to

remove a nucleon from an even nucleus, one has first to break apart the pair to

which it belongs and this demands additional energy. The discontinuities at A ≈ 40

and 48 are indicators of nuclear shell closures. They show up even more clearly in

two-neutron separation energies.

Figure 1.9 shows the two-neutron separation energies for the (Z = 20) calcium

isotopes. The odd-even staggering is now smoothed out but the discontinuities at

A = 40 (N = 20) and 48 (N = 28) remain. One sees that it requires significantly

10
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1.3 Nuclear shell structure
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Figure 1.9: Two-neutron separation ener-
gies, S2n, for the calcium isotopes. The
odd-even staggering is smoothed away,
leaving a clear indication of discontinuities
at A = 41 and 49. (The data are from Audi
G., Wapstra A.H. and Thibault C. (2003),
Nucl. Phys. A729, 337.)

more energy to remove a pair of neutrons when N ≤ 20 than when N ≥ 22.4 Thus,

we say that the discontinuities occur at N = 20 and N = 28. Such discontinuities

are observed both for protons and neutrons at N, Z = 2, 8, 20, 28, 50, and 82, and

at N = 126. Examples of these discontinuities for 18 ≤ N ≤ 156 are shown in

Figure 1.10.

Differences in radii between neighbouring isotopes also change dramatically at

N = 2, 8, 20, 28, 50, 82, and 126. This is shown for 24 ≤ N ≤ 144 in Figure 1.11.

One sees that the differences in radii increase from values close to local minima to

values close to local maxima at the specified values of N . The numbers 2, 8, 20,

28, 50, 82 and 126 are called magic numbers. The occurrence of magic numbers

suggests a shell structure in nuclei similar to that seen in atoms.

Atoms exhibit changes in binding energies (ionization potentials) and radii (co-

valent and ionic radii) due to changes in electronic shell filling. When atomic shell

filling in atoms passes through the numbers 2, 10, 18, 36, 54, or 86, there are sud-

den decreases in ionization potentials and sudden increases in covalent and ionic

radii. These changes reflect the exclusion of electrons from the “smaller” more

strongly-bound configurations that are filled first in atoms. The implication of the

data shown in Figures 1.10 and 1.11 is that nuclei also possess shell structure. In

atoms, energy shells reflect the dominance of the independent-particle component

of the Hamiltonian. A suggestion that the nuclear Hamiltonian contains a domi-

nant independent-particle component, also comes from the observation that magic

numbers have the same values for protons and neutrons, regardless of mass number,

i.e., magic numbers for protons do not depend on the number of neutrons and vice

versa. It is also suggested by the observation of single-particle states in the near

neighbours of doubly closed-shell nuclei. These are states which, to a first approxi-

mation, are simple (uncorrelated) products of core states and single-particle states.

4The separation energy of a pair at N = 21 is approximately the average of the N = 20 and
N = 22 values. This corresponds to the fact that the first neutron is removed from the N = 21
nucleus and the second from the N = 20 nucleus; the calcium isotopes have Z = 20.

11
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Single-particle energies in the pf shell

Figure courtesy United States Postal Service
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1 Elements of nuclear structure

Figure 1.28: Low-energy states in the A = 42
isobars 42Ca, 42Sc, and 42Ti. Excitations
are in MeV. Levels are labelled by their spin-
parity, Jπ . The vertical arrows indicate the
energies above which there are excited states
known but which are omitted from the fig-
ure. The states shown for 42Sc result from
the various spin couplings of the configura-
tion π1f7/2ν1f7/2. The J = 0, 2, 4, 6 mem-
bers of this multiplet are connected with the
corresponding (π1f7/2)

2 and (ν1f7/2)
2 states

in 42Ti and 42Ca, respectively. (The data
are taken from Endt P.M. (1990), Nucl. Phys.
A521, 1.)
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J = 0 pairing is most important between nucleons in identical shell model orbitals.

For nucleons in two different shells with the same angular momentum, as for the

(π1h9/2ν2g9/2) states of 210Bi, the pairing interaction is significantly smaller. An

explanation for this is that the overlap between nucleon wave functions in a J = 0

state is smaller for nucleons in different shells than for nucleons in a common shell.

Exercises

1.10 Plot Ex vs. J (cf. Figure 1.26) for the h9/2f7/2 and h9/2i13/2 multiplets in 210Po.

1.11 Show that the possible spin values for two identical fermions with spin 9/2 are
0, 2, 4, 6, 8. [This can be done with the m scheme: make a table of mj values
(m1, m2), ensuring that m1 > m2 (Pauli principle), list M := m1 + m2, and
identify the possible values of J (recall M = J, J − 1, . . . , −J).]

1.12 Using the m scheme, show that the possible spins for 42Sc are as given in Figure
1.28.

1.5 Singly-closed shell nuclei

The low-energy structure of singly-closed shell nuclei is, to a considerable degree, a

direct extension of the structure of doubly-closed shell nuclei plus or minus a few

nucleons. For example, the low-lying states in the doubly-even Sn (Z = 50) isotopes,

shown in Figure 1.29, resemble those of 130Sn. This resemblance is attributed to

the pairing force which energetically favours the formation of multiple J = 0 pairs.

The even-mass tin isotopes are uniformly characterised by a Jπ = 0+ ground

state and a large energy gap between the ground and first-excited states.15

15The interpretation of the energy gap in nuclei as an indication of the superfluid nature of

32
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Pairing as approximation to short-range interaction

J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, Berlin, 2007).

12.2 The Pure Pairing Force 373

Table 12.1. The two-body interaction matrix elements (12.4) for different values
of the total angular momentum J

J 0 2 4 6

〈VSDI〉 (A1) −4.000 −0.952 −0.468 −0.233

The matrix elements are given in units of the isovector strength
parameter A1 of the SDI.

As can be seen from Table 12.1, the interaction for the J = 0 pair is
much stronger than for the J �= 0 pairs. This suggests that we may simplify
the interaction in a single j shell by making the approximation that only
the J = 0 channel contributes. Starting from the general form (8.15) of the
two-body interaction Hamiltonian, we have

VRES = − 1
2

∑

J

Ĵ〈j j ; J |V | j j ; J〉
[[

c†
jc

†
j

]
J

[
c̃j c̃j

]
J

]
00

pairing≈ − 1
2 〈j j ; 0 |V | j j ; 0〉

[
c†
jc

†
j

]
0

[
c̃j c̃j

]
0

= − 1
2 〈j j ; 0 |V | j j ; 0〉ĵ−2

∑

mm′

(−1)j−m+j−m′
c†
jmc†

j,−mc̃jm′ c̃j,−m′

= 1
2 〈j j ; 0 |V | j j ; 0〉ĵ−2

∑

mm′

c†
jmc̃†

jmc̃jm′cjm′

= 2〈j j ; 0 |V | j j ; 0〉ĵ−2
∑

m>0
m′>0

c†
jmc̃†

jmc̃jm′cjm′ , (12.5)

where we have used (1.34), (4.23) and (4.9). With the abbreviation

2〈j j ; 0 |V | j j ; 0〉ĵ−2 ≡ −G (12.6)

we have the pure pairing interaction, or just the pairing interaction, VPAIR for
a single j shell as

VPAIR = −G
∑

mm′>0

c†
jmc̃†

jmc̃jm′cjm′ . (12.7)

The pairing interaction (12.7) can be immediately generalized to several j
shells, to read

VPAIR = −G
∑

jj′

∑

mm′>0

c†
jmc̃†

jmc̃j′m′cj′m′ . (12.8)

The idea of the pairing interaction is that it is attractive and of short
range. Therefore G has to be a positive constant. In the single-shell case the
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Fig. 12.2. Experimental spectrum of 42Ca compared with calculated SDI and pair-
ing spectra

12.4 Seniority Model of the Pure Pairing Force

In this section we assume that there are N nucleons that occupy a single j
shell, with a single-particle energy εj = 0. First we derive analytical expres-
sions for the energies and degeneracies of nuclear states with good seniority.
We then apply the formalism to nuclei whose valence nucleons occupy the
0f7/2 shell.

12.4.1 Derivation of the Seniority-Zero Spectrum

Here we derive the excitation spectrum for states with seniority zero. The
derivation is based on the commutation relations between the pair operators
and the pure pairing Hamiltonian (12.7). With reference to (12.12), we define
a pair creation operator as

A† ≡ 1√
Ω

∑

m>0

A†
jm =

1√
Ω

∑

m>0

c†
jmc̃†

jm . (12.20)

As seen from (12.19), this operator creates a zero-coupled pair. It can be used
to write the pairing interaction (12.7) in the form
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Seniority relates states obtained by adding pairs

J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, Berlin, 2007).

12.4 Seniority Model of the Pure Pairing Force 377

VPAIR = −GΩA†A . (12.21)

The particle number operator n̂ is defined as

n̂ ≡
∑

m

c†
jmcjm =

∑

m>0

(
c†
jmcjm + c̃†

jmc̃jm

)
. (12.22)

Straightforward derivations give the commutation relations

[
A,A†] = 1 − n̂/Ω ,
[
A†, n̂

]
= −2A† ,

[
VPAIR, A†] = −GA†(Ω − n̂) = −G(Ω − n̂ + 2)A† .

(12.23)

The commutator of the pair operator A† with the pairing interaction VPAIR

gives

VPAIRA†|0〉 =
[
VPAIR, A†]|0〉 + A†VPAIR|0〉

= −G(Ω − n̂ + 2)A†|0〉 = −GΩA†|0〉 . (12.24)

Action of the pairing potential on a state of two pairs yields in the same way

VPAIR

(
A†)2|0〉 =

[
VPAIR, A†]A†|0〉 + A†VPAIRA†|0〉

= −G(Ω − n̂ + 2 + Ω)
(
A†)2|0〉 = −2G(Ω − 1)

(
A†)2|0〉 . (12.25)

From (12.24) and (12.25) we see how the procedure continues for any number
of zero-coupled pairs. By induction one can prove the general result

VPAIR

(
A†)N/2|0〉 = − 1

4GN(2Ω − N + 2)
(
A†)N/2|0〉 . (12.26)

We now define a new quantum number, the seniority v, which is the num-
ber of nucleons not pairwise coupled to angular momentum zero, in short the
number of unpaired nucleons. The fully paired state of N nucleons is then

(
A†)N/2|0〉 = |N , v = 0〉 , (12.27)

and (12.26) gives its energy

Ev=0(N) = − 1
4GN(2Ω − N + 2) . (12.28)

12.4.2 Spectra of Seniority-One and Seniority-Two States

To extend the previous discussion of seniority-zero states to non-zero seniori-
ties we define the Ω − 1 operators B†

J , J �= 0

B†
J ≡

√
2
∑

m>0

(−1)j+m(j m j −m|J 0)c†
jmc̃†

jm =
1√
2

[
c†
jc

†
j

]
J0

. (12.29)
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(
n
m

)
=

n!

m!(n − m)!
, (12.46)

and θ(x) is the Heaviside step function defined in (9.14). Note that the de-
generacy is independent of the particle number N . For states with N > Ω
the degeneracy is obtained by counting holes instead of particles, according
to Nhole = 2Ω − N . The same applies to the determination of the possible
seniorities and angular momenta.

12.4.4 Application of the Seniority Model to 0f7/2-Shell Nuclei

Figure 12.3 shows the results for different particle numbers in the 0f7/2 shell
within the seniority scheme. Up to midshell, Ω = 4, we count particles and
thereafter holes. The energies of the different seniority states are given by
(12.43) and (12.44).

In the simple cases N = 1, 2 the connection between angular momentum
and seniority is seen immediately. For N = 1 the only choice is trivially v = 1.
For N = 2 the definition of seniority in Subsect. 12.4.1 means that the J = 0
state has v = 0 and the J �= 0 states have v = 2. For a particle number N > 2
we must first find the possible angular momenta J . This can be done by the
m-table technique mentioned in Sect. 1.3. Seniorities can then be assigned to
angular momentum states by comparing the seniority degeneracies D(v) and
the angular momentum degeneracies 2J + 1.

In the example of Fig. 12.3 the configuration (7
2 )3 contains the angular

momenta J = 3
2 , 5

2 , 7
2 , 9

2 , 11
2 , 15

2 . The degeneracy of the J = 7
2 state is 8; on the

other hand (12.45) gives D(1) = 8. The summed degeneracy of the remaining
J states is 48; on the other hand (12.45) gives D(3) = 48. We conclude that

N=2
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(27)v=2

0

5

10

15

20

25

N=1
v=1(8)
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(J=2, 4, 6)

(J=2, 4, 5, 8)

3/2, 5/2, 9/2, 11/2, 15/2(J=                                    )

Fig. 12.3. Excitation spectra in the seniority scheme for different numbers N of
particles occupying the 0f7/2 shell. The seniority v is indicated for each level. The
numbers in parentheses to the left of the levels give the degeneracies. The angular
momentum content of the levels is given on the far right
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1.5 Singly-closed shell nuclei
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Figure 1.29: Low-energy states in the even-mass tin (Z = 50) isotopes. The 0+ ground states and 2+ first
excited states are discussed in the text. (The data are taken from Nuclear Data Sheets and Juutinen S. et al.
(1997), Nucl. Phys. A617, 74 – 106Sn; Górska M. et al. (1998), Phys. Rev. C58, 108 – 104Sn.)

In fact, the ground states of all doubly-even singly-closed shell nuclei have Jπ =

0+ and a significant energy gap separating them from the first excited state. This is

consistent with the tendency of like nucleons to form J = 0 coupled pairs. Moreover,

it suggests that the pair coupling of like nucleons persists with excitation energy; i.e.,

pairs tend to be broken one at a time and low-energy excitations are predominantly

single-broken-pair configurations.

The second notable feature of Figure 1.29 is that the only excited state of an Sn

isotope below ≈ 2 MeV is a single 2+ state at a nearly constant energy of about 1

MeV. The near constant energy of the first excited 2+ state is a widespread feature

of singly-closed shell nuclei. The 2+ state can be interpreted as a single broken pair

of neutrons recoupled to Jπ = 2+. As seen for 210Po (cf. Figure 1.21), a Jπ = 2+

pair is favoured energetically, although not as much as a Jπ = 0+ pair.

It is also instructive to interpret the first excited 2+ states in singly-closed shell

nuclei, such as the tin isotopes, as one-phonon quadrupole vibrational states (cf. Sec-

tion 1.7.1). Such states may be compared with the superfluid persistent-flow states

of a quantum fluid and with the persistent-current states of a superconductor. It

nuclear matter was quickly recognised by Bohr A., Mottelson B.R. and Pines D. (1958), Phys.
Rev. 110, 936, following the paper of Bardeen et al., op. cit. Footnote 11 on Page 24.
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1 Elements of nuclear structure
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Figure 1.30: Low-energy states in the odd-mass tin isotopes. Levels are labelled by their spin-parity. The
vertical arrows indicate the energies above which there are excited states known but which are omitted
from the figure. The lowest three states are a selection from the spin-parities 5/2+, 7/2+, 1/2+, 3/2+,
11/2−, corresponding to the single-particle configurations 2d5/2, 1g7/2, 3s1/2, 2d3/2, 1h11/2, respectively.
Information on states in 103,105,107,109Sn is very limited. The identification of 2d5/2 in 117Sn and 1g9/2 in
123,129Sn is ambiguous. (The data are taken from Nuclear Data Sheets and Fahlander C. et al. (2001), Phys.
Rev. C63, 021307(R) – 103Sn.)

has already been remarked that J = 0 coupled pairs of nucleons, such as the Cooper

pairs of a superconductor, can be regarded as quasi bosons. Because, for practical

purposes, a nucleus is a zero-temperature system, the ground state of a pair-coupled

nucleus may be compared with that of a zero-temperature quantum fluid or with

the fully-paired ground state of a zero-temperature superconductor. It requires con-

siderable energy to dissociate a Cooper pair and thereby create an excited state of

a superconductor. However, the whole electron gas in a superconductor can be set

in motion without breaking any pairs. Moreover, once in motion, this highly collec-

tive state (all electrons moving in unison) cannot easily dissipate its translational

energy. In particular, it cannot give up translational energy by breaking a Cooper

pair because the energy required to do so is too large. Thus, the current flow, as-

sociated with the collective translational motion of electrons in a superconductor,

continues without resistance. In a similar way, one can understand the occurrence

of collective vibrational 2+ states with energies less than that required to break a

two-nucleon pair. It should be noted, however, that the alternative descriptions of

the 2+ states as collective vibrational states and recoupled broken-pair states are
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The Fermi surface and quasiparticle excitation
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1.5 Singly-closed shell nuclei

not incompatible with one another. The collective vibrational interpretation simply

implies a strongly-correlated structure for the recoupled Jπ = 2+ pair.

The systematic features of the low-lying states of the odd-mass tin isotopes,

shown in Figure 1.30, can be understood qualitatively as resulting from the succes-

sive filling of the single-particle shell-model states 2d5/2, 1g7/2, 3s1/2, 2d3/2, 1h11/2,

in the 50 ≤ N ≤ 82 shell (cf. Figure 1.17); the ground state and first few excited

states always match a selection from these single-particle states. The appearance

of states with the same spins as single-particle shell-model states in odd nuclei with

many (interacting) nucleons outside of a closed shell can be attributed (again) to

the tendency of like nucleons to form J = 0 pairs, thereby leaving the odd unpaired

nucleon in a specific shell-model state. Other excited states (indicated by vertical

arrows) result from the “breaking” of J = 0 pairs and recoupling them to J 6= 0.

Transfer reactions measure the occupancies of single-particle orbitals. Consider,

for example, adding a nucleon in a d5/2 single-particle state to an even nucleus in its

Jπ = 0+ ground state to form an odd-mass nucleus in a Jπ = 5/2
+

state. Addition

of a neutron to a nucleus is achieved in a (d,p) transfer reaction. The probability

for the transfer to occur depends on the extent to which the d5/2 neutron orbital

in the target nucleus is vacant and, therefore, able to accommodate the additional

neutron. Figure 1.31 shows the fractional occupation probabilities, v2
j , for various

shell-model orbitals as a function of neutron number in the Sn isotopes. It is

1.0
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0.6

0.4

0.2

0.0

112 114 116 118 120 122 124

A

Sn  isotopes

s1/2
d3/2

d5/2

g7/2

h11/2

vj
2

Figure 1.31: Fractional occupation
probabilities, v2

j , of single-particle or-

bitals in 112−124Sn. The uncertainties
in v2

j shown are typical for each sub-
shell (other uncertainties are omitted to
avoid cluttering the figure). (The data
are taken from Fleming D.G. (1982),
Can. J. Phys. 60, 428.)

evident from Figure 1.31 that the occupancies of the single-particle orbitals in the

tin isotopes change rather smoothly, with no significant discontinuities, as a function

of changing neutron number.

Two-neutron transfer reactions on doubly-even tin target nuclei show the per-

sistent concentration of the transfer strength in the ground-state-to-ground-state

transitions. This is illustrated in Figure 1.32. These data indicate that all of the

ground states are simply related to their neighbours by the addition or removal of

a spin-zero coupled neutron pair.
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Separation of rotational degree of freedom
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|φK〉 Intrinsic structure (K ≡ a.m. projection on symmetry axis)

DJ
MK(ϑ) Rotational motion in Euler angles ϑ

Rotational energy
E(J) = E0+A

[
J(J+1)+

Coriolis (K = 1/2)︷              ︸︸              ︷
a(−)J+1/2(J+ 1

2 )
]

A ≡ ~
2

2J

Rotational relations (Alaga rules) on electromagnetic transitions
B(E2;Ji→ Jf ) ∝ (JiK20|Jf K)2(eQ0)2 eQ0 ∝ 〈φK |Q2,0|φK〉

A

E0

E

1�2 3�2 5�2 7�2 9�2

J



M. A. Caprio, University of Notre Dame

1 Elements of nuclear structure

bands can be seen for 168Er in Figure 1.58. The figure shows 70 excited states of
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Figure 1.58: The low-lying states of 168Er arranged into rotational bands. The positive-parity bands are
shown also in Figure 1.59. (The data are taken from Nuclear Data Sheets.)

168Er classified unambiguously into 14 rotational bands. Each band is associated

with a different intrinsic state and a K quantum number.

The extent to which the bands of states in 168Er are fitted by the rotor energy for-

mula can be seen in Figure 1.59, which shows how the energies of the positive-parity

states of Figure 1.58 vary with I(I + 1). The slopes of the curves are proportional

to the inverses of the moments of inertia. Thus, to a first approximation, it appears

that all the bands have similar moments of inertia. A possible exception is the

Kπ = 0+ band built on the 1217 keV 0+ state which has a somewhat smaller value

for ~2/2ℑ, i.e., a shallower slope.

Although the energies plotted in Figure 1.59 follow remarkably straight lines

as functions of I(I + 1), the figure also shows a slight, but systematic, curving

to shallower slopes with increasing I. The effect is seen more clearly if transition

energies, rather than excitation energies, are plotted. Figure 1.60 shows a plot of

(4I − 2)/∆EI,I−2 vs. I for ground-state rotational bands of selected nuclei. For

rigid rotors these bands would appear as horizontal lines. The non-rigidity or non-

adiabaticity of these nuclei is dramatically illustrated. Whatever is changing with

increasing angular momentum is changing smoothly.

68

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational
Models (World Scientific, Singapore, 2010).
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1.7 Low-energy collective structure in doubly-even nuclei
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It is tempting to suppose that nuclei, being liquid-drop like, should stretch under

increasing angular momentum. Indeed, such behaviour would explain the upward

curvature of the plots in Figure 1.60. Remarkably, shape changes are not indicated

by quadrupole moment data and electric quadrupole transition data. Such data

are presented in Figure 1.61 for the same nuclei as shown in Figure 1.60. Within

experimental errors (which are quite large because the measurements are not easy)

the data indicate that the quadrupole moments and E2 transition rates are consis-

tent with a rotor of constant intrinsic quadrupole moment, i.e., the parameter Q̄0

(cf. Equations (1.51) and (1.52)), for each nucleus is a constant. Another possibil-

ity is that the nuclear fluid flows are those of a superfluid and that the degree of

superfluidity decreases with increasing angular momentum due to the Coriolis inter-

action.27 Whatever is changing, the small energy differences between the states of a

rotational band are much more sensitive to minor changes in the intrinsic structure

of the states than are their quadrupole moments.

Some insight into the internal dynamics of a rotating nucleus can be gained by

considering empirical moments of inertia compared to classical rigid-body estimates.

The classical rigid-body moment of inertia for a nucleus of mass A is 2
3MA2〈r2〉,

where M is the mass of a nucleon and 〈r2〉 is the mean-square radius of the deformed

nucleus. Using a typical value of 〈r2〉 for a strongly deformed nucleus, one estimates

27The similarity between the force on a charged particle in a magnetic field and the Coriolis
force on a particle in a rotating frame of reference was noticed many years ago and led Mottelson
B.R. and Valatin J.G. (1960), Phys. Rev. Lett. 5, 511, to predict that a breakup of nucleon pairs
should occur in rotational nuclei at high rotational angular momenta similar to the destruction of
superconductivity in the Meissner effect.

69

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational
Models (World Scientific, Singapore, 2010).
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1 Elements of nuclear structure
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Figure 1.70: The alignment of a single-
particle orbit in a spheroidal potential. Fig-
ures (a) and (b) show equipotential surfaces
for prolate and oblate potentials, respectively.
Figures (c) and (d) show equidensity surfaces
for 1h11/2 single-particle wave functions with
projection of the particle spin along the in-
trinsic symmetry 3-axis, having value Ω =
1/2 in (c) and Ω = 11/2 in (d). The Ω = 1/2
state and the Ω = 11/2 state have lowest
energy in a prolate and an oblate potential,
respectively.
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Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational
Models (World Scientific, Singapore, 2010).
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1.8 Low-energy collective structure in odd nuclei

when ~ωz−~ω⊥ ≫ 〈Dl̂2+ξ l̂·ŝ〉, the mixing of different eigenstates of ĥǫ is small and

the single-particle energies are defined by the good (asymptotic) quantum numbers

N , nz, Λ (the eigenvalue of l̂z̄), and Ω (the eigenvalue of ĵz̄).

A Nilsson model energy level diagram for the 50 < Z < 82 deformed region is

shown in Figure 1.71. As expected, each energy level is two-fold degenerate which
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Figure 1.71: A Nilsson diagram for protons in nuclei with 50 ≤ Z ≤ 82. Energies, in units of ~ω0, are plotted
against the deformation parameter, ǫ. Energy levels are labelled by their spherical shell model quantum
numbers, l and j, at ǫ = 0, and by the asymptotic quantum numbers Ω[NnzΛ] for ǫ 6= 0. (The figure is
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Observed energy levels for A = 7 nuclei
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Rotational features emerge in ab initio calculations
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Valence shell structure? SU(3)
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Elliott SU(3) symmetry
Generators of SU(3) ⊃ SO(3)

L(1)
M ∼ (b† × b̃)(1)

M Q(2)
M ∼ (b† × b̃)(2)

M

States classified into SU(3) irreps (λ,µ)
– States are correlated linear combinations of configurations over `-orbitals
– Branching of SU(3)→ SO(3) gives rotational bands (in L)
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Sp(3,R) ⊃ U(3) dynamical symmetry for 7Be

(b)

L=1
�S=0(3,0)1/2

3/2
1/2

L=3

�S=0(3,0)1/2

7/2
5/2(c)1/2

3/2

5/2

7/2

0(3,0)1 /2

1/2
3/2

5/2

7/2

9/2

11/2

2(5,0)1 /2

1/2
3/2
5/2

1/2
3/2
5/2

7/2

0(1,1)3 /2

1/2
3/2

3/2
5/2

0(1,1)1 /2

1/2

0(0,0)1 /2
3/2

0(0,0)3 /2

(a)

σS=0(3,0)1/2

Sp(3,R)⊃U(3)
dynamical symmetry

(d)

1/2 5/2 7/2 9/2 11/2

J

H =αCSp(3,R)+εH0+βCSU(3)+aLL2+aSS2+ξL ·S

A. E. McCoy, M. A. Caprio, T. Dytrych, and P. J. Fasano, Phys. Rev. Lett. 125, 102505 (2020).



M. A. Caprio, University of Notre Dame

Decomposition by U(3) content
Yrast band up to maximal “valence” angular momentum has U(3)
Nex(λ,µ) = 0(3,0) S = 1/2
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Chapter 1

Elements of nuclear structure

1.1 Introduction

A nucleus is the core of an atom. By atomic standards, its dimensions are minus-

cule. Atoms have radii of the order of 10−9m whereas nuclear radii are more like

10−14m. Compared to an atom, a nucleus is like a grain of sand in a football sta-

dium. Nevertheless, its mass is almost the entire mass of the atom. Approximately

99.97% of the mass of an atom resides in its nucleus. This means that, by mass,

approximately 99.97% of the material world is nuclear matter.

Nuclei consist of nucleons of which there are two types: positively charged pro-

tons and uncharged neutrons. Both nucleon types have essentially the same mass

and are approximately 2000 times as massive as an electron. They are held together

in a nucleus by the so-called strong interaction. This interaction is much stronger

but of much shorter range than the Coulomb interaction that binds the atomic

electrons to their nuclei. At a separation distance of 1.0 fm, the strong attraction

between two nucleons is some 30 times as strong as the Coulomb repulsion between

two protons. However, at a distance of 20 fm, the strong interaction is smaller than

the Coulomb interaction by a factor of 2000.

In spite of the predominance of nuclear matter in our world, it is easy to be

oblivious to the existence of nuclei. This is because nuclei are hidden beneath pro-

tective clouds of atomic electrons which effectively keep them apart. In addition,

nuclei are prevented from coming into contact with one another by the electro-

static repulsions that result from their positive charges. Thus, one has little direct

experience of nuclei outside of the nuclear physics laboratory.

Because nuclei are so isolated, it is not surprising that most physical properties of

the everyday world can be explained in terms of atoms and the electronic bonds they

make with one another to form molecules and solids. Nevertheless, to understand

the existence of atoms, one must first understand the existence of nuclei. Indeed,

since an atom is stable only if its nucleus is stable, the question of which atoms can

exist is one of nuclear physics. So also is the issue of how many chemical elements

are accessible for use or study. At an even more fundamental level, the question of

how atoms come into being at all is one of nuclear physics.

1

David Rowe, Playa del Carmen, 2003.
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