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Nucleosynthesis Processes

Red Giant Stars

p-process  s-process

X-ray bursts

rp-process
Novae
ap-process
Neutron Star mergers
Carbon
burning

Weak r-process in NDW
Stellar Burning after CCSN
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Modified image from:

M S. Smlth andKE Rehm, Ann. Rev. Nucl. Part. Sci, 51 (2001)
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Experiments with radioactive beams
Things to consider

= Low intensities
= Inverse kinematics (beam mass > target mass)

. LA =

Compound
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Experiments with radioactive beams
Things to consider for detection of reaction products

= Efficient detectors are needed

» Reaction products go forward in the laboratory system (narrow cone)

— Angular distributions of reaction products is more difficult

— Larger percentages of the reaction products detected in spectrometers
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Opportunities at Several Facilities (US examples)

Exotic beams for Nuclear astrophysics

RAISOR at ATLAS

Fragment — /
Mass Analyzer o

[ L
Ln.;mmnlg.;m, Gammasphere
rep La
Split-Pole
| —SRIB;J‘ Stopped sﬁemmm.
ECR2 /‘: am Stations
lon Source S|
J ATLAS Linac "7\ Beam Line
- ﬁ p N\
y \ Large Scattering
{ Facllity
]
ECR3 Cr——— [=—] [
lon Source ‘
—
| Accelerator ° 50
Control Room —
| Approximate Scale
CT] [ "
| ]
“7% .S DEPARTMENT OF _ Argonne National Laboratory is a
A g U.S. Departr t of Er laborate
ZJENERGY 5 chrimem el negs sbersoy 6

FRIB

Front End
Building

ECR
lon Sources
Linac
Tunnels

Radioactive lon Beam
Post Accelerator

(s;gﬁdsé?op' . per Experimental Area

Addition

~ Superconducting

Office Addition 7" Heavy lon Driver Linac

Cryogenics

Connector Highbay Faciliti
acilities

and South Highbay
Extension

Fragment
Separator

ISOL Targets
(option

Argonne &

NATIONAL LABORATORY



Facility For Rare Beam Isotope Beams

Ribbon cutting ceremony on May 2nd. First experiment on May 9th- Exciting!!
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(oph U.S. Secretary of Energy Jennifer M. Granholm
(center right) and MSU President Samuel L. Stanley
Jr., M.D. (center left) cut the ribbon
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Facility For Rare Beam Isotope Beams

FRIB is funded by the DOE-SC, MSU and the State of Michigan.

T T | E5 T

Separated fast beam rates
go L http://igroups.nscl.msu.edu/frib/rates/
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RAdioactive lon Separator (RAISOR)
Upgrade of the In-Flight capabilities at ATLAS (2018)

Improvement in numerous areas: o
* Intensity "
 Selectivity & Reach
* Accessibility
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Previously produced

Expected w/ new capabilities [> 103 pps]
Slide courtesy of C. Hoffman
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Nucleosynthesis In Type | X-ray Bursts

= Most common thermonuclear explosions
in the Galaxy.

= Explosive hydrogen-helium burning arising
from thermonuclear ignition in the
envelope of a neutron star in close binary
systems.

Neutron Star:
« Mass=14 M °

» Radius = 10-15 km : " -
_ » 5 = Typically composition similar to
. DenS|ty =10 glcm the sun.

= Gravity = 10" cm/s? = Predominantly H and He

Companion Star:
= Main sequence star (1.5 M)
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Type | X-ray Bursts Observations

Observations by X-ray telescopes

ANS: 1974-1976 ROSAT: 1983-1986

<

RXTE: 1995-2012 BeppoSAX: 1996-2003 | CHANDRA: 1999- XMM-Newton: 1999- NuSTAR: 2012-




Type | X-ray Bursts Observables

nght curves propertles Four of seven burst observed with EXOSAT in Aug 19 1985

during 20 hr observation

2000 [~

" Peak luminosity ~1038 erg s-1 T

= Burst duration 10-100 s d500 ; 1t

= Fastrise time ~ 0.5-10 s

= Decay time ~ 10-100 s

= No cataclysmic event recurrence rate: ) Rt | SN i
hours to days ——

2000

1000 -

500

Counts/second

c d
1500 |

Accumulation of accreted matter for
hours - Unstable nuclear burning for
seconds

1000 |

500

Counts/second

19902000201020202030  88908900891089208930
Time (s)

W.H.G Lawin et al. 1993
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Nucleosynthesis In Type | X-ray Bursts

The burst is powered by the 3a reaction,
followed by the ap-process and the rp-process

" ap process
(a,p) and (p,y) reactions

" rp (rapid proton capture) process
(p,y) reactions and B decays

Hundreds of nuclear species!
What are the most important
reactions?
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a-Induced Reactions In X-ray Bursts
Sensitivity Studies

= Dependence on uncertainties in (p,y), (a,y), and (a,p) nuclear reaction rates using fully
self-consistent burst models

2 [t T 2 (T
i 5Cu(p,y)®Zn Dn i 56Ni(a,p)®9Cu Up:

S(a,p)?*Cl1 Up
-—=- 28gj(a,p)**P Up

~—— 8Zn(a,p)%Ga Up |
22Mg(a,p)?Al Dn |
295(a,p)®Cl Up |

— - — 2A)l(p,7)*Si Up
——— 27P(p,7)®S Dn
8Ga(p,7)%Ge Dn
56Ni(p,y)5’Cu Dn

- —- 18Ne(a,p)?'Na Dn :
--- Si(a,p)*®P Up
Ar(a,p)¥K Up
Baseline

—-— %K(p,y)*Ca Up

- == 5Cu(p,7)%Zn Dn
#Mg(p.7)**Al Dn

Baseline

Luminosity (x10% ergs/sec)
Luminosity (x10% ergs/sec)
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time (s) time (s)

R.H. Cyburt et al., ApJ 830, 55 (2016)
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Experimental Equipment
Some examples

(p,y) reactions:
SECAR — Separator for Capture

Reactions

(a,p) reactions:

JENSA — The Jet Experiment in Nuclear Structure
~and Astrophysics

AT-TPC — The active Target Time Projection

Chamber

ANASEN- Array for Nuclear Astrophysics and

Structure with Exotic Nuclei

MUSIC — The Multi Sampling lonization Chamber

A

Active targets
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SECAR

The SEparator for CApture Reactions

= SECAR will be used to advance our understanding of stellar explosions including
novae, X-ray bursts, and supernovae, as well as other exotic astrophysical sites
= Designed with the required sensitivity to study (p,y) and (a,y) reactions
g
Step 1: Dipoles | g
Che:rgé stl:zees o l'ﬁ@i’ﬁm =
selection Step 2: Velocity Filter
=3 Mass resolution 510
Recoil selection
Step 4: Dipoles
5 X Cl be:
JENSA g:;zc f;ofsocal Plane g eanuP scattered beam ﬁ]
gas jet target e N
BGO T ~.
detector array | Step 3: Velocity Filter
~ Mass resolution 770
Remove leaky beam
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Active targets
Advantages

Active targets are versatile detectors that take full
advantage of radioactive beams

= Measure a large range of excitation functions using
single beam energies

= High efficiency

® Possible measurements:

— 18Ne(a,p)2'Na——> ANASEN

— 22Mg(a,p)®Al —— AT-TPC & MUSIC
— ZBSi(a’p)ng

— 3OS(a’p)33C|

— 34Ar(a’p)37K
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AT-TPC: Direct measurement of the 22Mg(a,p) reaction
First direct measurement

(a)

/ 5 AsAd boards Micromegas High-voltage
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J. S. Randhawa et al., Phys. Rev. Lett. 125, 202701 (2020)

This reaction has also been recently measured with the MUSIC detector
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Measurements with MUSIC

MUIti-Sampling lonization Chamber

Anode ————————————
Frisch / >
Grid Beam
Cathode
Schematic of the anode structure
9cm (L 01 [
-
e N e e I [
sol1]2]3]4a|5]|6]7]|8]|9]10[11[12][13]14]15]16]17
28 cm Beam
(ZENERGY [mmasminii,

= Close to 100% efficiency

= Measure a large range of excitation
functions of angle and energy integrated
cross sections using single beam energy

= Self normalizing: No additional monitors
for absolute normalization

= 34 channels

Rate capability: About 1x10° pps (*He)
Counting gases: He, He-Kr, CH,, Ne, Ar
Typical Pressures: 100-760 Torr

19 Argonne &



X-ray bursts research with MUSIC

a-induced reactions play an important role for reproducing light curves from
type | X-ray bursts.

Example ""F(a,p)

2000 -
(a,p) reactions for X-ray bursts 1800 -
1600 _
=
1400 = il
2 LT
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1 150(a. 7)'"Ne D 16 1 1000 o
|2 Ni(a, p)*’Cu [ 6.4 1] 800
3 Tatp, 3 Zn ) RA T
. ~Cialp o) L — : 600F R T R R T T
5 2Mg(a. p)HAl D 2.3 1 35 E (MeV)
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Production of the heavy elements

= What processes are responsible for the
creation of the heavy elements?
=  What astrophysical site?

rp-process
L]
L |

30 O]

ap-process
L]

0
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Carbon
burning
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Modified image from:

M.S. Smlth andKE Rehm, Ann. Rev. Nucl. Part. Sci, 51 (2001)
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Neutron Star mergers

Weak r-process in NDW
after CCSN
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Production of the heavy elements
What are the processes responsible for their production?

Nucleosynthesis beyond iron occurs primarily in stellar environments with free-neutron

densities
5\ 9 :_..lllIIII'lllllllllll'lllllll'lllllll'lllllll_: S_process (SIOW neutron capture)
= 8 gy 3 = density ~10°neutrons/cm3

Il BN . SRR Odd A e
= F & H ] = capture neutrons slower than B-decay
L 6E ig Bang 3 .
g .F ¢ Alphaeclements ] " path close to stability
3 A ; Iron peak 3 =  Well understood
2 3E |} 3
g oF |} j r-process (rapid neutron capture)
Z 1F t 4 = density ~1023 neutrons/cm3
0 OF J 4 = capture neutrons more rapidly than B-decay
—~ _1 NN N I I AT AT AT I AR AN AR AT AN A AR IO O ] path to the more neutron_rich

0 20 40 60 80 100 120 140 160 180 200 220

Atomic mass number A = Many open questions

PN i e e ot g o S
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r-process

What is the site that produces them in the r-process?

On 17 August 2017, gravitational waves (GW170817)
and electromagnetic radiation from radio to y-rays
associated with the merger of two neutron stars were
detected.

Evidence suggest that these mergers are a the
dominating site of r-process nucleosynthesis

Nuclear physics needed to infer the physical

conditions in neutron star mergers that lead to the
observed r-process features

23
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r-process
What is needed?

ngaagsE”

GSI
T1/2 Pn

= [3-decay rates
= Masses

= Neutron capture rates
= [-delayed neutron \

GSIESR |
Ring: Mass | if

Jyvaskyla
Trap: Mass
L e 1 - "

emission branchings TRIUMF Trap: Mass e
A \E\ CERN/ISOLDE
el ELELE TPy
i EE : RIKEN T, ,
L]
NP | NSCLT,,,P,

C J Horowitz et al., J. Phys. G: Nucl. Part. Phys. 46 (2019) 083001

Recent r-process motivated experiments measuring masses or
B-decay halflives Ty, at various radioactive beam facilities
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r-process
Is Neutron Star Merger the only site?

Silver Eu Gold

' = Ultra metal poor stars show robust
abundance pattern for second and
third r-process peak

Relative log €
- -
x
l{
J
[}
‘. l} -
E
¥ {
q <] b
‘» ) ll
fﬁl
IfH ®
1 1

= First peak show star-to-star scatter

= |ighter elements in the r-process
N — i —— (weak r-process) are probably
produced in a different site

Aloge
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w
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o
T
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Weak r-process

It has been proposed that core-collapse supernovae and their
neutrino-driven winds are possible production sites for the
lighter elements in the r-process (30<Z<45).

(a, n) rate uncertainties are crucial to predict abundances.

“These reactions are critical to redistribute the matter and
allow it to move from light to heavy elements after nuclear
statistical equilibrium freezes out.”

J. Bliss et al., Journal of Physics G: Nuclear and Particle Physics 44, 054003 (2017)

é’;‘% A3 PERIIERLON, Argonne National Laboratory is 2
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(a,n) reactions in the weak r-process
Uncertainties in Hauser-Feshbach calculations

100 oA N T P el i~
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10" -- MS
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5 . Se . —
~ T T T
~ NPT S SE SRR
x 0
~ - .
e - -~
) -
~
Ugr 100 Mo

2 3 456 7 89 2 3 456 7 89
Temperature [GK]

J. Bliss et al., Journal of Physics G: Nuclear and Particle Physics 44, 054003 (2017)
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Most recent experimental efforts (some examples)

=  Measurements at NSCL using the HabaNERO detector
(S. Ahn et al.)

= Future measurements at Ohio University HeBGB
(K. Brandenburg et al.)

=  Measurements at NSCL using the
SECAR+LENDA (Z. Meisel & F. Montes et al.)

= Activation method at ATOMKI

28
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Experimental efforts (some examples)

Activation method at ATOMKI (Hungary)

= Thick Mo targets were irradiated with
o-beam

? = Th rmination of the number of
109Mo(o,n)®Ru e dete ation of the number o
Atomki 2019

103Ry products was based on
o sblviunaiva measuring the yield of emitted y-rays

----- Transmission model

Thick target yield
[reaction/projectile]

107

I’ % of L | 1 L3 T ¢ T L] T * T ) T i I | R 1
75 80 85 9.0 9.5 10.010.5 11.0 11.5 12.0 12.5 13.0
E. . [keV]

T.N. Szegedi et al 2020 J. Phys.: Conf. Ser. 1668 012041
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Weak r-process studies with MUSIC

(a,n) reactions in neutrino-driven winds after CCSN

» Measurement°f the 1%°Mo(a,n) reaction

...................................

50/ W.J. Ong et al., PRC 105, 055803 (2022)
a5 g e
T. g 1250 — ((x,n)
% e A -~ Large angle (a,)
< 1200 }5‘\ 3 — Small angle ()
n 3 g PR — 100Mo beam
305
250
i 4 ams 2-
20 o ='STL‘;TL‘ ::cl;:im "
95 a0 As 0 A 50 155t 6 )
N E
. . o
= (a, n) reaction affecting the nucleosynthesis of 10" T Colcad e (. O BN T meet T
- 2 Anode Strip Number
A Szegedi [15)

Graf [14])

lighter heavy nuclei in r-process (weak

]
O Esterlund [13)

# 408 Torr, 498,1 MeV
& 459 Torr, 474.8 MeV

were identified.

8 9 10 1 12 13 14
Center-of-mass Energy (MeV)
J. Bliss et al., Phys Rev C 101, 055807 (2020)

= Recent measurement of the 8Sr(a,n) reaction!
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Future facilities

FRIB
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All of the beams relevant for the weak r-process will be available in the near future!
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26Al production

26785 (5%, T1/,=7.4x10° y) is observed | the Galaxy via the 1.8-MeV y-ray line,
provides evidence of ongoing nucleosynthesis in stars

Credits: MPE Garching/Roland Diehl
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26Al production

<o) & = Need to understand all of the
2070 24 .
reaction that produce and destroy
26A|
1056 1 = Things get more complicated due to
Y \ isomer
447 =S \B = 26A] in the Galaxy is mainly destroyed
- S via 26Al(p,g)?’Si reactions.
0 5¢
267 | \ 1809 2r
\\ Y
0 0
BMg

C. lliadis et al AJSS2002
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The 26Al™(p,y)?’Si reaction

How can we constrain this reaction?

What about the 26AI™(d,p)2’Al reaction? (Neutron transfer reaction)

Things to consider:

= Spectroscopic information of states in 2’Al populated can be extracted.

=  Symmetry considerations between members of the A = 27 mirror system
(27Al, 27Si) can be used to constrain the 26AI™(p,y)?/Si reaction rate in relevant
astrophysical scenarios.

= Can we produce an isomeric beam?

@}ENERGY U.S. Department of Energy \abov‘atovy 34
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26Al beam production at ATLAS

B. W. Asher et al., Nucl. Instrum. Meth. Phys. Res. Sect. A 899, 6 (2018)
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—_— = ool T 3
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200 ¥Ry .
] .
o . LK) - -
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L 11 h II-TH|J—T-||:||.|||!'|.|||||
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Nal 2

= Developed and characterized a 2°Al™ beam at ATLAS via in-flight technique using
the 26Mg(p,n) reaction.

= Choosing the production energy we can manipulate the isomer content

= A 120 MeV 26Al beam (70% isomer,) with I~ 2.5x10° pps
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26 A| results

T T——— = Some resonances in 27Al only populated by
" (a Al(d,p) Prgsenl measurement .
a3 | the isomer.
1oof- = Experimental rate of this reaction measured
sof- J 'HA for the first time!
o 7“‘,"{]‘“. LT -
L () %ap(d,p) Pain et al., modified from [23] 1 10°¢ : ; ; :
150_- —_' ::(a) ]
- 10°E =
a_ = = =
43 , ; Bt 3
o . ] ; L = =
ik 1 ‘J : Energy region Eof , :
[ \. i K AA] of interest 2 10"F L ——"ar o) E
] ! ] - / (piy)*" Si —
C> l' n‘ nl 1“1 1JL, ; L«_\ rll"\/q\/\‘ i % 10-":: _________ ’AI"'(p,y)”SI-NACRE ::
r PRSI M AR AN D Z0E P AI"(py)7 Si (this work) —
150:_(c) Al"(d,p) Presen menlto.2 M:eV: P e E',"=142-kev 3
[0.84 MeV 6.8 Mey M- L =7 | EP=378-keV 3
[ ] 10p < T T 1
100F _- - (0)\ T :
r ] 1 \ = E
: ] o F <
50_—‘/ 2 10"} |
L (=4 3
: i 2 |- Isomer rate / g.s. rate )
(U "1*‘“5“‘“! ﬂf}’f‘.’q{ A e T * NACRE isomer / STARLIB g.s.!é

ZAl Apparent Excitation Energy (MeV) 10°
S. Almaraz-Calderon et al., Phys. Rev. Lett. 119, 072701(2017)

. 1
“ Temperature (GK)
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SUMMARY

= Nuclear physics is key to understand stellar processes

= Several experimental techniques can be used to constrain reaction rates
relevant for different astrophysical scenarios

= Both direct and indirect techniques can be used to constrain reaction rates

= Exciting opportunities in the near future at FRIB!
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QUESTIONS?
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