

¹⁰B + α reactions at low energies

Nucleosynthesis in primordial stellar environments may lead to a substantial production of ¹⁰B isotopes, which either are converted by the ¹⁰B(p, α)⁷Be reaction to ⁷Be or processed further by ¹⁰B+ α reactions towards the carbon, nitrogen, and oxygen range. This paper focuses on low energy studies of the ¹⁰B(α , p)¹³C and ¹⁰B(α , d) ¹²C reactions to determine the low energy cross section and the reaction rates in stellar environments

using *R*-matrix analysis techniques. The experimental results cover a broad energy range, from 0.21 MeV up to 1.4 MeV in the center of mass frame, extending down to the Gamow energy range. A substantial increase in the reaction rate compared to previous predictions is found, due to the identification of near threshold α -cluster resonance structures.

Gula et al. PRC **107**, 025805 (2023) NSF Grant No. PHY-2011890 and PHY-1430152 (JINA-CEE)

